29、如圖①所示是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中虛線(xiàn)用一個(gè)剪刀平均分成四個(gè)小長(zhǎng)方形,然后按照?qǐng)D②的方式拼成一個(gè)長(zhǎng)方形.

(1)你認(rèn)為圖②中的陰影部分的正方形的邊長(zhǎng)等于
a-b

(2)請(qǐng)用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
方法一:
(a-b)2
方法二:
(a+b)2-4ab

(3)觀(guān)察圖②,你能寫(xiě)出(a+b)2、(a-b)2、ab這三個(gè)代數(shù)式之間的等量關(guān)系式嗎?
(4)根據(jù)上式中的等量關(guān)系,解決下列問(wèn)題:若a+b=6,ab=8,求(a-b)2的值.
分析:1、觀(guān)察圖形很容易得出圖b中的陰影部分的正方形的邊長(zhǎng)等于a-b;
2、①求出小正方形的邊長(zhǎng),②運(yùn)用大正方形的面積減去四個(gè)矩形的面積.
3、觀(guān)察圖形可知大正方形的面積(a+b)2,減去陰影部分的正方形的面積(a-b)2等于四塊小長(zhǎng)方形的面積4mn,即(a+b)2=(a-b)2+4ab;
4、由2很快可求出(a-b)2=(a+b)2-4ab=62-4×8=4.
解答:解:(1)根據(jù)圖形可觀(guān)察出:邊長(zhǎng)=a-b;
(2)①小正方的邊長(zhǎng)=a-b,面積可表示為:(a-b)2,大正方形的面積為::(a+b)2,四個(gè)矩形的面積和為4ab,
面積可表示為:(a+b)2-4ab.
(3)由分析得:(a-b)2=(a+b)2-4ab.
(4)由2很快可求出(a-b)2=(a+b)2-4ab=62-4×8=4.
點(diǎn)評(píng):本題考查了完全平方公式的實(shí)際應(yīng)用,完全平方公式與正方形的面積公式和長(zhǎng)方形的面積公式經(jīng)常聯(lián)系在一起,要學(xué)會(huì)觀(guān)察.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、①如圖甲所示是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,若把此圖沿圖中虛線(xiàn)剪開(kāi)均分為四塊小長(zhǎng)方形,然后按圖乙的形狀拼成一個(gè)正方形,請(qǐng)問(wèn):這兩個(gè)圖形的什么未改變
周長(zhǎng)
;用含a、b的式子表示:原長(zhǎng)方形面積為
2a×2b
,正方形的面積為
(a+b)2
正方形的面積比原長(zhǎng)方形的面積多
(a+b)2-4ab

②由①可得出下面的結(jié)論:在周長(zhǎng)一定的長(zhǎng)方形中,
邊長(zhǎng)相等
時(shí),此長(zhǎng)方形的面積最大.
③若一長(zhǎng)方形的周長(zhǎng)為36cm,則當(dāng)邊長(zhǎng)為多少時(shí),該圖形的面積最大最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①所示是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線(xiàn)用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖②的方式拼成一個(gè)正方形.

(1)圖②中的陰影部分的小正方形的邊長(zhǎng)
m-n
m-n
;大正方形的邊長(zhǎng)=
m+n
m+n

(2)請(qǐng)用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
方法①
(m-n)2
(m-n)2
方法②
(m+n)2-4mn
(m+n)2-4mn

(3)觀(guān)察圖②,請(qǐng)寫(xiě)出(m+n)2,(m-n)2,mn這三個(gè)代數(shù)式之間的等量關(guān)系嗎?
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問(wèn)題:若m+n=5,mn=4,則求(m-n)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(一)如圖①所示是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線(xiàn)用剪刀分成四個(gè)小長(zhǎng)方形,然后按圖②的方式拼成一個(gè)正方形.

(1)你認(rèn)為圖②中的陰影部分的正方形的邊長(zhǎng)等于
m-n
m-n

(2)請(qǐng)用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.方法①
(m+n)2-4mn
(m+n)2-4mn
方法②
(m-n)2
(m-n)2
 
(3)觀(guān)察圖②,你能寫(xiě)出(m+n)2,(m-n)2,mn這三個(gè)代數(shù)式之間的等量關(guān)系嗎?
(二)若(a+b)(b+c)(c+a)=0,abc<0且abc中c是最小的數(shù),試說(shuō)明(a-b)(b-c)(c-a)與0的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①所示是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線(xiàn)用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖②的方式拼成一個(gè)正方形.
(1)你認(rèn)為圖②中的陰影部分的正方形的邊長(zhǎng)等于
m-n
m-n

(2)請(qǐng)用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
方法①
(m+n)2-4mn
(m+n)2-4mn

方法②
(m-n)2
(m-n)2

(3)觀(guān)察圖,你能寫(xiě)出(m+n)2,(m-n)2,mn這三個(gè)代數(shù)式之間的等量關(guān)系嗎?
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問(wèn)題:若a+b=3,ab=2,則求(a-b)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

①如圖甲所示是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,若把此圖沿圖中虛線(xiàn)剪開(kāi)均分為四塊小長(zhǎng)方形,然后按圖乙的形狀拼成一個(gè)正方形,請(qǐng)問(wèn):這兩個(gè)圖形的什么未改變________;用含a、b的式子表示:原長(zhǎng)方形面積為_(kāi)_______,正方形的面積為_(kāi)_______正方形的面積比原長(zhǎng)方形的面積多________.
②由①可得出下面的結(jié)論:在周長(zhǎng)一定的長(zhǎng)方形中,________時(shí),此長(zhǎng)方形的面積最大.
③若一長(zhǎng)方形的周長(zhǎng)為36cm,則當(dāng)邊長(zhǎng)為多少時(shí),該圖形的面積最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案