“圓材埋壁”是我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題,“今有圓材,埋壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問徑幾何?”用現(xiàn)在的數(shù)學(xué)語言表述是:“如圖所示,CD為⊙O的直徑,CD⊥AB,垂足為E,CE=1寸,AB=1尺,求直徑CD長(zhǎng)是多少寸?”(注:1尺=10寸)
∵AB⊥CD
∴AE=BE
∵AB=10
∴AE=5
在Rt△AOE中,∵OA2=OE2+AE2
∴OA2=(OA-1)2+52
∴OA=13
∴CD=2A0=26
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

⊙O的半徑r=1,弦AC=
2
,弦AB=
3
,則∠BAC的度數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

過⊙O內(nèi)一點(diǎn)P的最長(zhǎng)弦長(zhǎng)為10cm,最短弦長(zhǎng)為6cm,則OP的長(zhǎng)為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O直徑,OB=6,弦CD=10,則弦心距OP的長(zhǎng)為( 。
A.8B.4C.
26
D.
11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在⊙O中,P為其內(nèi)一點(diǎn),過點(diǎn)P的最長(zhǎng)弦的長(zhǎng)為8cm,最短的弦的長(zhǎng)為4cm,則OP的長(zhǎng)為( 。
A.2
3
cm
B.2
2
cm
C.2cmD.1cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知AB是⊙O中一條長(zhǎng)為4的弦,P是⊙O上一動(dòng)點(diǎn),且cos∠APB=
1
3
,問是否存在以A、P、B為頂點(diǎn)的面積最大的三角形?試說明理由;若存在,求出這個(gè)三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O過點(diǎn)B、C.圓心O在等腰直角△ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為(  )
A.
10
B.2
3
C.3
2
D.
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的半徑是10cm,點(diǎn)A在⊙O上,線段AC交⊙O于點(diǎn)B,AC=23cm,AB=12cm,點(diǎn)P在線段AC上,設(shè)AP=x(cm),OP=y(cm).
(1)求y關(guān)于x的函數(shù)關(guān)系式,及x的取值范圍;
(2)當(dāng)x=4、14時(shí),求y的值;
(3)當(dāng)y=8時(shí),求x的值;
(4)當(dāng)x為何值時(shí),10≤y≤17?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB、BC分別交于點(diǎn)D、E,則AB=______.AD=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案