分析 探究一,過點P作PE∥AB,根據(jù)平行線的性質(zhì)可知∠B+∠BPE=180°,∠D+∠EPD=180°,即∠B+∠BPD+∠D=360°.
探究二,連接QP并延長至E,根據(jù)∠BPE是△BPQ的一個外角,得到∠BPE=∠BQP+∠B.同理得到∠EPD=∠DQP+∠PDQ,從而∠BPD=∠B+∠PDQ+∠BQD.
探究三,根據(jù)三角形外角性質(zhì)和四邊形的內(nèi)角和等于360°得出即可.
解答 探究一,∠B+∠BPD+∠D=360°,
證明:過點P作PE∥AB,如圖②,
∴∠B+∠BPE=180°,
又∵AB∥CD,
∴PE∥CD,
∴∠D+∠EPD=180°,
∴∠B+∠BPE+∠D+∠EPD=360°,
即∠B+∠BPD+∠D=360°;
探究二,∠BPD=∠B+∠PDQ+∠BQD,
證明:連接QP并延長至E,如圖③,
∵∠BPE是△BPQ的一個外角,
∴∠BPE=∠BQP+∠B.
同理:∠EPD=∠DQP+∠PDQ.
∴∠BPE+∠EPD=∠BQP+∠B+∠DQP+∠PDQ.
即:∠BPD=∠B+∠PDQ+∠BQD;
探究三,如圖④,∵∠1=∠A+∠E,∠2=∠B+∠F,∠1+∠2+∠C+∠D=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
點評 本題考查了平行線的性質(zhì),同時要結(jié)合三角外角的性質(zhì),最關(guān)鍵的是知道兩直線平行,內(nèi)錯角相等.
科目:初中數(shù)學 來源: 題型:選擇題
A. | a(1+2x) | B. | 2a(1+x%) | C. | a(1+x)2 | D. | a+2x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | x=4,y=1 | B. | x=2,y=3 | C. | x=4,y=3 | D. | x=0,y=5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com