如圖,已知:⊙C的圓心C在x軸上,AB是⊙C的直徑,⊙C與y軸交于D、E兩點,且∠ACD=∠FDO.
(1)求證:直線FD是⊙C的切線;
(2)若OC:OA=1:2,DE=4
2
,求直線FD的解析式.
(1)證明:∵∠COD=90°,
∴∠ACD+∠CDO=90°,
又∵∠ACD=∠FDO,
∴∠FDO+∠CDO=90°,
即FD⊥CD;
又∵CD是⊙C的半徑,
∴FD是⊙C的切線;

(2)∵AB⊥DE,
∴DO=
1
2
DE=2
2
;
設(shè)OC=m,則OA=2m,CD=3m,
在Rt△OCD中,CD2=CO2+DO2
∴m=1,
∴CD=3,CO=1;
可證:△COD△CDF,
CD
CF
=
CO
CD
CF=9,
∴F(-8,0)D(0,2
2
);
設(shè)直線FD的解析式為y=kx+2
2

∴k=
2
4
,
∴y=
2
4
x+2
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙二人騎自行車同時從張莊出發(fā),沿同一路線去李莊.甲行駛20分鐘因事耽誤一會兒,事后繼續(xù)按原速行駛.如圖表示甲、乙二人騎自行車行駛的路程y(千米)隨時間x(分)變化的圖象(全程),根據(jù)圖象回答下列問題:
(1)乙比甲晚多長時間到達李莊?
(2)甲因事耽誤了多長時間?
(3)x為何值時,乙行駛的路程比甲行駛的路程多1千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,⊙P的圓心P在x軸上,⊙P與x軸交于點E、F,與y軸交于點C、D,且EO=1,CD=2
3
,又B、A兩點的坐標(biāo)分別為(0,m)、(5,0).
(1)當(dāng)m=3時,求經(jīng)過A、B兩點的直線解析式;
(2)當(dāng)B點在y軸上運動時,若直線AB與⊙P保持相交,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線l1經(jīng)過點A(-1,0)和點B(2,3).
(1)求直線l1的解析式;
(2)若點P是x軸上的點,且△APB的面積為3,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在一次運輸任務(wù)中,一輛汽車將一批貨物從甲地運往乙地,到達乙地卸貨后返回.設(shè)汽車從甲地出發(fā)x(h)時,汽車與甲地的距離為y(km),y與x的函數(shù)關(guān)系如圖所示.根據(jù)圖象信息,解答下列問題:
(1)這輛汽車的往、返速度是否相同?請說明理由;
(2)求返程中y與x之間的函數(shù)表達式;
(3)求這輛汽車從甲地出發(fā)4h時與甲地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某地區(qū)一種商品的需求量y1(萬件)、供應(yīng)量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應(yīng).當(dāng)y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時,政府常通過對供應(yīng)方提供價格補貼來提高供貨價格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬件,政府應(yīng)對每件商品提供多少元補貼,才能使供應(yīng)量等于需求量?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

今年以來,廣東大部分地區(qū)的電力緊缺,電力公司為鼓勵市民節(jié)約用電,采取按月用電量分段收費辦法,若某戶居民每月應(yīng)交電費y(元)與用電量x(度)的函數(shù)圖象是一條折線(如圖所示),根據(jù)圖象解下列問題:
(1)分別寫出當(dāng)0≤x≤100和x>100時,y與x的函數(shù)關(guān)系式;
(2)利用函數(shù)關(guān)系式,說明電力公司采取的收費標(biāo)準(zhǔn);
(3)若該用戶某月用電62度,則應(yīng)繳費多少元若該用戶某月繳費105元時,則該用戶該月用了多少度電?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,溫度計上表示了攝氏溫度(℃)與華氏溫度(℉)的刻度,如果氣溫是攝氏25°,則相當(dāng)于華氏______℉.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀下列材料,再解答后面的問題.
材料:密碼學(xué)是一門很神秘、很有趣的學(xué)問,在密碼學(xué)中,直接可以看到的信息稱為明碼,加密后的信息稱為密碼,任何密碼只要找到了明碼與密碼的對應(yīng)關(guān)系--密鑰,就可以破譯它.
密碼學(xué)與數(shù)學(xué)是有關(guān)系的.為此,八年一班數(shù)學(xué)興趣小組經(jīng)過研究實驗,用所學(xué)的一次函數(shù)知識制作了一種密鑰的編制程序.他們首先設(shè)計了一個“字母--明碼對照表”:
字母ABCDEFGHIJKLM
明碼12345678910111213
字母NOPQRSTUVWXYZ
明碼14151617181920212213242526
例如,以y=3x+13為密鑰,將“自信”二字進行加密轉(zhuǎn)換后得到下表:
漢字
拼音ZIXIN
明碼:x26924914
密鑰:y=
密碼:y9140
因此,“自”字加密轉(zhuǎn)換后的結(jié)果是“9140”.
問題:
(1)請你求出當(dāng)密鑰為y=3x+13時,“信”字經(jīng)加密轉(zhuǎn)換后的結(jié)果;
(2)為了提高密碼的保密程度,需要頻繁地更換密鑰.若“自信”二字用新的密鑰加密轉(zhuǎn)換后得到下表:
漢字
拼音ZIXIN
明碼:x26924914
密鑰:y=
密碼:y7036
請求出這個新的密鑰,并直接寫出“信”字用新的密鑰加密轉(zhuǎn)換后的結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案