如圖1,在△ABC中,AB=k•AC,∠BAC+∠DAE=180°,AD=k•AE.
探索△AEB與△ACD面積之間的數(shù)量關(guān)系,并寫出你的解答過程.
說明:如果你反復(fù)探索沒有解決問題,可以選。1)或(2)中的條件,選(1)中的條件完成解答滿分為7分;選(2)中的條件完成解答滿分為5分.
(1)k=1,∠BAC=90°(如圖2);
(2)k=1,∠BAC=120°,且B、A、D三點(diǎn)共線(如圖3).
精英家教網(wǎng)
分析:要求兩個(gè)三角形的面積關(guān)系,首先要作出兩個(gè)三角形的高,利用兩角相等,得到相似三角形,根據(jù)對(duì)應(yīng)邊成比例得到關(guān)于高的關(guān)系式,代入三角形的面積公式可得答案.
解答:精英家教網(wǎng)證明:結(jié)論:△ABE的面積等于△ACD的面積
過點(diǎn)E作EF⊥BA延長線于F,過點(diǎn)D作DG⊥AC于G,
∴∠AFE=∠AGD=90°,
∵∠BAC+∠DAE=180°,
∴∠2+∠BAE=180°,
又∵∠1+∠BAE=180°,
∴∠1=∠2,
∴△AFE∽△AGD,
EF
DG
=
AE
AD

∵AD=k•AE,
∴DG=k•EF,
S△ABE=
1
2
AB•EF
S△ACD=
1
2
AC•DG
,
∵AB=k•AC,
∴S△ABE=S△ACD
點(diǎn)評(píng):本題考查了相似三角形的判定及性質(zhì)、三角形的面積的相關(guān)知識(shí);題目的解題方法比較獨(dú)特,作出兩條高線是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是圓O的切線;
(2)當(dāng)∠BAC=90°時(shí),求證:
PE
CE
=
1
2
;
(3)如圖2,當(dāng)PC是圓O的切線,E為AD中點(diǎn),BC=8,求AD的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請(qǐng)解答下列問題:
(1)寫出一個(gè)你所學(xué)過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點(diǎn)D在BC上,且CD=CA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,不必證明;若不存在,請(qǐng)說精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2
;
(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點(diǎn)D是垂足,點(diǎn)E是BC的中點(diǎn),規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點(diǎn)O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當(dāng)∠ABC=90°時(shí),且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案