【題目】如圖,菱形ABCD和菱形ECGF的邊長分別為2和3,點D在CE上,且∠A=120°,B,C,G三點在同一直線上,則BD與CF的位置關(guān)系是_____;△BDF的面積是_____.
【答案】平行
【解析】
由菱形的性質(zhì)易求∠DBC=∠FCG=30°,進(jìn)而證明BD∥CF;設(shè)BF交CE于點H,根據(jù)菱形的對邊平行,利用相似三角形對應(yīng)邊成比例列式求出CH,然后求出DH以及點B到CD的距離和點G到CE的距離,最后根據(jù)三角形的面積公式列式進(jìn)行計算即可得解.
解:∵四邊形ABCD和四邊形ECGF是菱形,
∴AB∥CE,
∵∠A=120°,
∴∠ABC=∠ECG=60°,
∴∠DBC=∠FCG=30°,
∴BD∥CF;
如圖,設(shè)BF交CE于點H,
∵CE∥GF,
∴△BCH∽△BGF,
∴=,即=,
解得:CH=1.2,
∴DH=CD﹣CH=2﹣1.2=0.8,
∵∠A=120°,∠ABC=∠ECG=60°,
∴點B到CD的距離為2×=,點G到CE的距離為3×=,
∴陰影部分的面積=.
故答案為:平行;.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D,AB,DC的延長線交于點E.
(1)求證:AC平分∠DAB;
(2)若BE=3,CE=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣3,0),B(l,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P是拋物線上的動點,且滿足S△PAO=2S△PCO,求出P點的坐標(biāo);
(3)連接BC,點E是x軸一動點,點F是拋物線上一動點,若以B、C、E、F為頂點的四邊形是平行四邊形時,請直接寫出點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).
其中正確的結(jié)論有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C.
(1)求證:BE=CE;
(2)將△EFG繞點E按順時針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時停止轉(zhuǎn)動.若EF,EG分別與AB,BC相交于點M,N,若AB=2.(如圖2)
①求證:四邊形EMBN的面積為定值;
②設(shè)BM=x,△EMN面積為S,求S最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,雙曲線l:y=(x>0)過點A(a,b),B(2,1)(0<a<2);過點A作AC⊥x軸,垂足為C.
(1)求l的解析式;
(2)當(dāng)△ABC的面積為2時,求點A的坐標(biāo);
(3)點P為l上一段曲線AB(包括A,B兩點)的動點,直線l1:y=mx+1過點P;在(2)的條件下,若y=mx+1具有y隨x增大而增大的特點,請直接寫出m的取值范圍.(不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=4,BC=2.點P從點A出發(fā),以每秒個單位長度的速度向終點C運動,點Q從點B出發(fā),以每秒2個單位長度的速度向終點A運動,連接PQ,將線段PQ繞點Q順時針旋轉(zhuǎn)90°得到線段QE,以PQ、QE為邊作正方形PQEF.設(shè)點P運動的時間為t秒(t>0)
(1)點P到邊AB的距離為______(用含t的代數(shù)式表示)
(2)當(dāng)PQ∥BC時,求t的值
(3)連接BE,設(shè)△BEQ的面積為S,求S與t之間的函數(shù)關(guān)系式
(4)當(dāng)E、F兩點中只有一個點在△ABC的內(nèi)部時,直接寫出t的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的方格紙中,畫出了一個“小老鼠”的圖案,已知每個小正方形的邊長為1
(1)在上面的方格紙中作出“小老鼠”關(guān)于直線DE對稱的圖案(只畫圖,不寫作法).
(2)以G為原點,GE所在直線為x軸,GH所在直線為y軸,小正方形的邊長為單位長度建立直角坐標(biāo)系,問:是否存在以點Q為頂點,且過點H和E的拋物線,并通過計算說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當(dāng)AB=12,CE=3時,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com