【題目】 ①如圖(1),直線l上有2個點,則圖中有2條可用圖中字母表示的射線,有1條線段
;
②如圖(2),直線l上有3個點,則圖中有 條可用圖中字母表示的射線,有 條線段;
③如圖(3),直線l上有n個點,則圖中有 條可用圖中字母表示的射線,有 條線段;
④應(yīng)用(3)中發(fā)現(xiàn)的規(guī)律解決問題:某校七年級共有8個班進行足球比賽,準(zhǔn)備進行循環(huán)賽(即每兩隊之間賽一場),預(yù)計全部賽完共需 場比賽.
【答案】②4 ,3;③2n-2,;④28.
【解析】
②寫出射線和線段后再計算個數(shù),注意射線的方向性,如射線A1A2和射線A2A1是兩條;③根據(jù)規(guī)律,射線是每個點用兩次,但第一個和最后一個只用一次;線段是從所有點中,任取兩個,據(jù)此用n表示射線和線段的數(shù)量;④若某校七年級共有8個班進行足球比賽,準(zhǔn)備進行循環(huán)賽(即每兩隊之間賽一場),等價于直線上有8個點,結(jié)合③中規(guī)律,容易解答全部賽完共需比賽場次.
解:②根據(jù)射線的定義,可得射線有:A1A2、A2A3、A2A1、A3A1,故共4條,可得線段有:A1A2、A1A3、A2A3,故共3條;故答案:4,3.
③根據(jù)規(guī)律,射線是每個點用兩次,但第一個和最后一個只用一次,故射線的條數(shù)是2n-2,線段是從所有點中,任取兩個,故線段的條數(shù)是,故答案:(2n-2),.
④∵某校七年級共有8個班進行足球比賽,
∴全部賽完共需比賽場次為:(場),
∴全部賽完共需比賽場次為28.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=6,AC=8, P是斜邊AB上一動點,PD⊥AC于點D,PE⊥BC于點E,則DE的長不可能是( )
A.4B.5C.6D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線與直線的圖象如圖所示,則下列說法:
①當(dāng)0<x<2時, y1>y2;②y1隨x的增大而增大的取值范圍是x<2;③使得y2大于4的x值不存在;④若y1=2,則x=2﹣或x=1.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,AB OC,點B,C的坐標(biāo)分別為(15,8),(21,0),動點M從點A沿A→B以每秒1個單位的速度運動;動點N從點C沿C→O以每秒2個單位的速度運動.M,N同時出發(fā),設(shè)運動時間為t秒.
(1)在t=3時,M點坐標(biāo) ,N點坐標(biāo) ;
(2)當(dāng)t為何值時,四邊形OAMN是矩形?
(3)運動過程中,四邊形MNCB能否為菱形?若能,求出t的值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠EDF的度數(shù)為( )
A.34°B.56°C.62°D.28°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“趙爽弦圖”是由四個全等的直角三角形與一個小正方形拼成的一個大正方形.如果小正方形的面積為4,大正方形的面積為100,直角三角形中較小的銳角為α,則tanα的值等于____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景知識)數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點A、點B表示的數(shù)分別為a、b,則A,B兩點之間的距離AB=|a–b|,線段AB的中點表示的數(shù)為.
(問題情境)如圖,數(shù)軸上點A表示的數(shù)為–2,點B表示的數(shù)為8,點P從點A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時點Q從點B出發(fā),以每秒2個單位長度的速度向左勻速運動.
設(shè)運動時間為t秒(t>0).
(綜合運用)(1)填空:①A、B兩點間的距離AB=__________,線段AB的中點表示的數(shù)為__________;
②用含t的代數(shù)式表示:t秒后,點P表示的數(shù)為__________;點Q表示的數(shù)為__________.
(2)求當(dāng)t為何值時,P、Q兩點相遇,并寫出相遇點所表示的數(shù);
(3)求當(dāng)t為何值時,PQ=AB;
(4)若點M為PA的中點,點N為PB的中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一塊矩形鐵皮,將四個角各剪去一個邊長為2米的正方形后,剩下的部分做成一個容積為90立方米的無蓋長方體箱子,已知長方體箱子底面的長比寬多4米,求矩形鐵皮的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com