3.若$\sqrt{14}$x=-$\sqrt{28}$,則x=-$\sqrt{2}$.

分析 直接利用二次根式的除法運(yùn)算法則化簡求出答案.

解答 解:∵$\sqrt{14}$x=-$\sqrt{28}$,
∴x=-$\frac{\sqrt{28}}{\sqrt{14}}$=-$\sqrt{2}$.
故答案為:-$\sqrt{2}$.

點(diǎn)評 此題主要考查了二次根式的乘除運(yùn)算,正確化簡二次根式是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.把下列各式因式分解:
(1)$\frac{3}{4}$a2-3ab+3b2
(2)(x-2)(x-3)-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.在3x,0,$\frac{x+y}{3}$,$\frac{1}{2}$x2-$\sqrt{13}$,$\frac{{x}^{2}}{3}$,$\frac{1}{x}$,$\frac{2}{x-y}$,$\frac{{x}^{2}}{π}$中,整式和分式的個(gè)數(shù)分別為( 。
A.5,3B.7,1C.6,2D.5,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.若代數(shù)式$\frac{-3}{|x|-2}$的值為正,則x的取值滿足-2<x<2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)兩組數(shù)據(jù)分別為x1,x2,…xn和y1,y2,…ym(m≠n),它們的平均數(shù)分別為p和q,求x1,x2,…,xn,y1,y2,…,ym的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.計(jì)算:
(1)$\sqrt{\frac{3}{4}}$×(-$\sqrt{2\frac{2}{3}}$)×$\sqrt{56}$;
(2)(-8$\sqrt{35}$)×(-$\frac{1}{4}$$\sqrt{1\frac{3}{7}}$).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.(歸納猜想題)觀察下列各式:由22×52=4×25=100.(2×5)2=102=100.可得22×52=(2×5)2.由23×53=8×125=1000,(2×5)3=103=1000.可得23×53=(2×5)3.請你再寫出兩個(gè)類似的式子,你發(fā)現(xiàn)了什么規(guī)律?用式子表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在△ABC中,∠ACB=90°,BC=5cm,AC=12cm,D為AC上一點(diǎn),將△BCD沿BD折疊,點(diǎn)C剛好落在AB邊上的E處,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.給出下列說法:
①等式m÷m=1;
②已知x表示一個(gè)兩位數(shù),把數(shù)字3放在x的左邊,組成的三位數(shù)是3x;
③兩條直線,不平行必相交;
④方程組$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$不是二元一次方程組;
⑤數(shù)據(jù)的收集要具有普遍性和代表性.
其中正確的說法有⑤(填上所有正確說法的序號(hào)).

查看答案和解析>>

同步練習(xí)冊答案