有一個附有進水管、出水管的水池,每單位時間內(nèi)進出水管的進、出水量都是一定的,設(shè)從某時刻開始,4h內(nèi)只進水不出水,在隨后的時間內(nèi)不進水只出水,得到的時間x(h)與水量y(m3)之間的關(guān)系圖(如圖).回答下列問題:
(1)進水管4h共進水多少?每小時進水多少?
(2)當(dāng)0≤x≤4時,y與x有何關(guān)系?
(3)當(dāng)x=9時,水池中的水量是多少?
(4)若4h后,只放水不進水,那么多少小時可將水池中的水放完?
(1)由圖象知,4h共進水20m3,所以每小時進水量為5m3

(2)y是x的正比例函數(shù),設(shè)y=kx,由于其圖象過點(4,20),所以20=4k,k=5,即y=5x(0≤x≤4).

(3)由圖象可知:當(dāng)x=9時y=10,即水池中的水量為10m3

(4)由于x≥4時,圖象是一條直線,所以y是x的一次函數(shù),
設(shè)y=kx+b,由圖象可知,該直線過點(4,20),(9,10).
20=4k+b
10=9k+b

k=-2
b=28

∴y=-2x+28
令y=0,則-2x+28=0,∴x=14.
14-4=10,所以4h后,只放水不進水,10h就可以把水池里的水放完.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知,如圖點A(1,1),B(2,-3),點P為x軸上一點,當(dāng)|PA-PB|最大時,點P的坐標(biāo)為(  )
A.(
1
2
,0)
B.(
5
4
,0)
C.(-
1
2
,0)
D.(1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,函數(shù)y=x的圖象l是第一、三象限的角平分線.
(1)實驗與探究:由圖觀察易知A(0,2)關(guān)于直線l的對稱點A′的坐標(biāo)為(2,0),請在圖中分別標(biāo)明B(5,3)、C(-2,5)關(guān)于直線l的對稱點B′、C′的位置,并寫出它們的坐標(biāo):B′______、C′______;
(2)歸納與發(fā)現(xiàn):結(jié)合圖形觀察以上三組點的坐標(biāo),你會發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點P(m,n)關(guān)于第一、三象限的角平分線l的對稱點P′的坐標(biāo)為______;
(3)類比與猜想:坐標(biāo)平面內(nèi)任一點P(m,n)關(guān)于第二、四象限的角平分線的對稱點P′的坐標(biāo)為______;
(4)運用與拓廣:已知兩點D(0,-3)、E(-1,-4),試在第一、三象限的角平分線l上確定一點Q,使點Q到D、E兩點的距離之和最小,并求出Q點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

去年底“四川廣元臍橙大量生蛆,近期不要吃臍橙”的消息在網(wǎng)上流傳開來后,重慶奉節(jié)臍橙受此影響滯銷.為了減少果農(nóng)的損失,今年初,政府部門出臺了相關(guān)補貼政策:采取每噸補貼0.02萬元的辦法補償果農(nóng).
下圖是“農(nóng)夫果園”今年政府補助前、后臍橙銷售總收入y(萬元)與銷售量x(噸)的關(guān)系圖.請結(jié)合圖象解答以下問題:
(1)在出臺該項優(yōu)惠政策前,臍橙的售價為每噸多少萬元?
(2)出臺該項優(yōu)惠政策后,“農(nóng)夫果園”將剩余臍橙按原售價打九折趕緊全部銷完,加上政府補貼共收入11.7萬元,求果園共銷售了多少噸臍橙?
(3)①求今年出臺該項優(yōu)惠政策后y與x的函數(shù)關(guān)系式;
②去年“農(nóng)夫果園”銷售30噸,總收入為10.25萬元;若按今年的銷售方式,則至少要銷售多少噸臍橙,總收入才能達到或超過去年水平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

兩兄弟進行登山運動,從山腳的北溫泉出發(fā),目的地是縉云山的主峰獅子峰,哥哥走了2千米后弟弟才出發(fā),圖中表示弟弟出發(fā)后兩兄弟離北溫泉的距離s隨時間t變化的圖象,根據(jù)圖象中的有關(guān)數(shù)據(jù)回答下列問題:
(1)分別求出表達哥哥和弟弟登山過程中離北溫泉的距離s(千米)與時間t(時)的函數(shù)解析式;(不要求寫自變量的取值范圍)
(2)當(dāng)哥哥到達目的地時,弟弟行進到山路上的某點A處,求A點距目的地的距離;
(3)若哥哥到達目的地后休息1小時,沿原路下山,途中與弟弟相遇,相遇后各自按原路線下山和上山,問弟弟出發(fā)后經(jīng)過多少小時與哥哥相遇以及此時離目的地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將長為30cm,寬為10cm的長方形白紙,按如圖所示的方法粘合起來,粘合部分的寬為3cm.設(shè)x張白紙粘合后的紙條總長度為ycm,則y與x的函數(shù)關(guān)系式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一報刊銷售亭從報社訂購某晚報的價格是每份0.7元,銷售價是每份1元,賣不掉的報紙還可以以0.2元的價格退還給報社,在一個月內(nèi)(以30天計算)有20天每天可賣出100份,其余10天每天只能賣出60份,但每天報亭從報社訂購的份數(shù)必須相同,若以報亭每天從報社訂購的報紙份數(shù)為自變量x,每月所獲得的利潤為函數(shù)y.
(1)寫出y與x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(2)報亭應(yīng)該每天從報社訂購多少份報紙才能使每月獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某蒜薹生產(chǎn)基地喜獲豐收,收獲蒜薹200噸.經(jīng)市場調(diào)查,可采用批發(fā)、零售、冷庫儲藏后銷售三種方式,并按這三種方式銷售,計劃平均每噸的售價及成本如下表:
銷售方式批發(fā)零售儲藏后銷售
售價(元/噸)300045005500
成本(元/噸)70010001200
若經(jīng)過一段時間,蒜薹按計劃全部售出獲得的總利潤為y(元),蒜薹零售x(噸),且零售量是批發(fā)量的
1
3

(1)求y與x之間的函數(shù)關(guān)系式;
(2)由于受條件限制,經(jīng)冷庫儲藏售出的蒜薹最多80噸,求該生產(chǎn)基地按計劃全部售完蒜薹獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

表示氣溫,有的地方用攝氏溫度,有的地方用華氏溫度.已知攝氏溫度與華氏溫度之間存在著某種函數(shù)關(guān)系,下表列出了一些攝氏溫度x(℃)及其所對應(yīng)的華氏溫度y(℉).
x(℃)-100102030
y(℉)1432506886
(1)以攝氏溫度為橫坐標(biāo),以華氏溫度為縱坐標(biāo),將表格中的數(shù)據(jù)描點連線;
(2)試確定y與x之間的函數(shù)關(guān)系式;
(3)某天,連云港的最高氣溫是8℃,悉尼的最高氣溫是91℉,問這一天悉尼的最高氣溫比連云港的最高氣溫高多少攝氏度(結(jié)果保留整數(shù))?

查看答案和解析>>

同步練習(xí)冊答案