已知,如圖點(diǎn)A(1,1),B(2,-3),點(diǎn)P為x軸上一點(diǎn),當(dāng)|PA-PB|最大時,點(diǎn)P的坐標(biāo)為(  )
A.(
1
2
,0)
B.(
5
4
,0)
C.(-
1
2
,0)
D.(1,0)

作A關(guān)于x軸對稱點(diǎn)C,連接BC并延長交x軸于點(diǎn)P,
∵A(1,1),
∴C的坐標(biāo)為(1,-1),
連接BC,
設(shè)直線BC的解析式為:y=kx+b,
k+b=-1
2k+b=-3
,
解得:
k=-2
b=1
,
∴直線BC的解析式為:y=-2x+1,
當(dāng)y=0時,x=
1
2
,
∴點(diǎn)P的坐標(biāo)為:(
1
2
,0),
∵當(dāng)B,C,P不共線時,根據(jù)三角形三邊的關(guān)系可得:|PA-PB|=|PC-PB|<BC,
∴此時|PA-PB|=|PC-PB|=BC取得最大值.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)圖象經(jīng)過點(diǎn)A(1,-1)和B(-3,-9).
(1)求此一次函數(shù)的解析式;并畫出其圖象.
(2)求此一次函數(shù)與x軸,y軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將△ABC放在平面直角坐標(biāo)系中,使B、C在X軸正半軸上,若AB=AC.且A點(diǎn)坐標(biāo)為(3,2),B點(diǎn)坐標(biāo)為(1,0).
(1)求邊AC所在直線的解析式;
(2)若坐標(biāo)平面內(nèi)存在三角形與△ABC全等且有一條公共邊,請寫出這些三角形未知頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,(1)求直線AB的解析式;
(2)若點(diǎn)C是第一象限內(nèi)的直線上的一個點(diǎn),且△BOC的面積為2,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線l的解析式為y=-
4
3
x+4,它與x軸、y軸分別相交于A、B兩點(diǎn),平行于直線l的直線m從原點(diǎn)O出發(fā),沿x軸的正方向以每秒1個單位長度的速度運(yùn)動,它與x軸、y軸分別相交于M、N兩點(diǎn),運(yùn)動時間為t秒(0<t≤3)
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)以MN為對角線作矩形OMPN,記△MPN和△OAB重合部分的面積為S,試探究S與t之間的函數(shù)關(guān)系;
(3)當(dāng)S=2時,是否存在點(diǎn)R,使△RNM△AOB?若存在,求出R的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=-
1
2
x+b(b>0)
分別交x軸、y軸于A、B兩點(diǎn).點(diǎn)C(4,0)、D(8,0),以CD為一邊在x軸上方作矩形CDEF,且CF:CD=1:2.設(shè)矩形CDEF與△ABO重疊部分的面積為S.
(1)求點(diǎn)E、F的坐標(biāo);
(2)當(dāng)b值由小到大變化時,求S與b的函數(shù)關(guān)系式;
(3)若在直線y=-
1
2
x+b(b>0)
上存在點(diǎn)Q,使∠OQC等于90°,請直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,△ABC為等腰三角形,AB=AC,將△AOC沿直線AC折疊,點(diǎn)O落在直線AD上的點(diǎn)E處,直線AD的解析式為y=-
3
4
x+6
,則
(1)AO=______;AD=______;OC=______;
(2)動點(diǎn)P以每秒1個單位的速度從點(diǎn)B出發(fā),沿著x軸正方向勻速運(yùn)動,點(diǎn)Q是射線CE上的點(diǎn),且∠PAQ=∠BAC,設(shè)P運(yùn)動時間為t秒,求△POQ的面積S與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,直線CE上是否存在一點(diǎn)Q,使以點(diǎn)Q、A、D、P為頂點(diǎn)的四邊形是平等四邊形?若存在,求出t值及Q點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一個附有進(jìn)水管、出水管的水池,每單位時間內(nèi)進(jìn)出水管的進(jìn)、出水量都是一定的,設(shè)從某時刻開始,4h內(nèi)只進(jìn)水不出水,在隨后的時間內(nèi)不進(jìn)水只出水,得到的時間x(h)與水量y(m3)之間的關(guān)系圖(如圖).回答下列問題:
(1)進(jìn)水管4h共進(jìn)水多少?每小時進(jìn)水多少?
(2)當(dāng)0≤x≤4時,y與x有何關(guān)系?
(3)當(dāng)x=9時,水池中的水量是多少?
(4)若4h后,只放水不進(jìn)水,那么多少小時可將水池中的水放完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)中,已知A、C兩點(diǎn)的坐標(biāo)分別為A(
5
,
5
)、C(3
5
,0).
(1)求△OAC的面積.
(2)在第一、二象限內(nèi)是否存在點(diǎn)B,使以O(shè)、A、B、C為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出所有符合條件的點(diǎn)B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案