【題目】如圖,是的直徑,是的弦,延長(zhǎng)到點(diǎn),使,連結(jié),過(guò)點(diǎn)作,垂足為,交的延長(zhǎng)線(xiàn)于點(diǎn).
求證:為的切線(xiàn);
猜想線(xiàn)段、、之間的數(shù)量關(guān)系,并證明你的猜想;
若,,求線(xiàn)段的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2).理由見(jiàn)解析;(3).
【解析】
(1)連接OD,由AO=BO,BD=DC,可判斷OD為△BAC的中位線(xiàn),則OD∥AC,由于EF⊥AC,則EF⊥OD,于是可根據(jù)切線(xiàn)的判定定理得到EF為⊙O的切線(xiàn);
(2)連結(jié)AD,根據(jù)圓周角定理得∠ADB=90°,而BD=CD,根據(jù)等腰三角形的判定得AB=AC,再根據(jù)等角的余角相等得到∠DAB=∠BDF,則可判斷△FBD∽△FDA,得到DF:AF=BF:DF,理由比例性質(zhì)得DF2=BFFA=BF(BF+AB),所以DF2=BF2+BFAC;
(3)先得到OD=,AB=AC=5.在Rt△ACD中,由正切的定義得到AD=2CD,再根據(jù)勾股定理可解得CD=.在Rt△ECD中,同樣可求得CE=1,則DE=2,AE=AC﹣CE=4,然后根據(jù)△FOD∽△FAE,利用相似比可求出EF的長(zhǎng).
(1)連接OD,如圖,∵AO=BO,BD=DC,∴OD∥AC.
∵EF⊥AC,∴EF⊥OD.
∵OD為半徑,∴EF為⊙O的切線(xiàn);
(2)DF2=BF2+BFAC.理由如下:
連結(jié)AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,而BD=CD,∴AB=AC,∠DAB+∠ABD=90°.
∵OD⊥DF,∴∠ODB+∠BDF=90°,而OD=OB,∴∠ODB=∠OBD,∴∠DAB=∠BDF,而∠BFD=∠DFA,∴△FBD∽△FDA,∴DF:AF=BF:DF,∴DF2=BFFA,∴DF2=BF(BF+AB)
∴DF2=BF2+BFAC;
(3)∵AO=,∴OD=,AB=AC=5.在Rt△ACD中,tanC==2,∴AD=2CD.
∵AD2+CD2=AC2,∴4CD2+CD2=52,解得:CD=Rt△ECD中,tanC==2,∴DE=2CE.
∵DE2+CE2=CD2,∴4CE2+CE2=5,解得:CE=1,∴DE=2,AE=AC﹣CE=4.
∵OD∥AE,∴△FOD∽△FAE,∴=,即=,∴EF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為等邊三角形,AE=CD,AD,BE相交于點(diǎn)P,BQ⊥AD于點(diǎn)Q,PQ=3,PE=1.
(1)求證:∠ABE=∠CAD;
(2)求BP和AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知為等邊三角形,點(diǎn)由點(diǎn)出發(fā),在延長(zhǎng)線(xiàn)上運(yùn)動(dòng),連接,以為邊作等邊三角形,連接.
(1)證明:;
(2)若,點(diǎn)的運(yùn)動(dòng)速度為每秒,運(yùn)動(dòng)時(shí)間為秒,則為何值時(shí),?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形的邊,分別在軸,軸上,點(diǎn)在邊上,將該長(zhǎng)方形沿折疊,點(diǎn)恰好落在邊上的點(diǎn)處,若,,則所在直線(xiàn)的表達(dá)式為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以為直徑的與邊交于點(diǎn),過(guò)點(diǎn)作交于點(diǎn),連接.
求證:是的切線(xiàn);
若的半徑為,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O外一點(diǎn),AB=AC,連接BC,交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:DE與⊙O相切.
(2)若∠B=30°,AB=4,則圖中陰影部分的面積是 (結(jié)果保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=60°,OA=OB,動(dòng)點(diǎn)C從點(diǎn)O出發(fā),沿射線(xiàn)OB方向移動(dòng),以AC為邊在右側(cè)作等邊△ACD,連接BD,則BD所在直線(xiàn)與OA所在直線(xiàn)的位置關(guān)系是( )
A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,AD 是 BC 邊上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于點(diǎn) E,過(guò)點(diǎn) E 作 EF∥AC,分別交 AB、AD 于點(diǎn) F、G.則下列結(jié)論:①∠BAC=90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B=2∠AEF,其中正確的有( )
A. 4 個(gè)B. 3 個(gè)C. 2 個(gè)D. 1 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是的角平分線(xiàn)上一點(diǎn),于點(diǎn),點(diǎn)是線(xiàn)段上一點(diǎn).已知,,點(diǎn)為上一點(diǎn).若滿(mǎn)足,則的長(zhǎng)度為( )
A.3B.5C.5和7D.3或7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com