【題目】(c2012防城港)某奶品生產(chǎn)企業(yè),2010年對鐵鋅牛奶、酸牛奶、純牛奶三個品種的生產(chǎn)情況進行了統(tǒng)計,繪制了圖1、2的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)酸牛奶生產(chǎn)了多少萬噸?把圖1補充完整;酸牛奶在圖2所對應(yīng)的圓心角是多少度?
(2)由于市場不斷需求,據(jù)統(tǒng)計,2011年的生產(chǎn)量比2010年增長20%,按照這樣的增長速度,請你估算2012年酸牛奶的生產(chǎn)量是多少萬噸?
【答案】
(1)解:牛奶總產(chǎn)量=120÷50%=240萬噸,
酸牛奶產(chǎn)量=240﹣40﹣120=80萬噸,
酸牛奶在圖2所對應(yīng)的圓心角度數(shù)為 ×360°=120°.
(2)解:2012年酸牛奶的生產(chǎn)量為80×(1+20%)2=115.2萬噸.
答:2012年酸牛奶的生產(chǎn)量是115.2萬噸.
【解析】(1)根據(jù)純牛奶所占百分率和純牛奶的產(chǎn)量,求出牛奶的總產(chǎn)量,用總產(chǎn)量減鐵鋅牛奶和純牛奶的產(chǎn)量即為酸牛奶的產(chǎn)量;酸牛奶產(chǎn)量除以總產(chǎn)量乘以360°即為酸牛奶在圖2所對應(yīng)的圓心角的度數(shù);(2)根據(jù)平均增長率公式直接解答即可.
【考點精析】本題主要考查了扇形統(tǒng)計圖和條形統(tǒng)計圖的相關(guān)知識點,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】學習了統(tǒng)計知識后,班主任王老師叫班長就本班同學的上學方式進行了一次調(diào)查統(tǒng)計,圖1和圖2是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,計算出“步行”部分所對應(yīng)的圓心角的度數(shù);
(2)求該班共有多少名學生;
(3)在圖1中,將表示“乘車”的部分補充完整.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知CE⊥AB于點E,BD⊥AC于點D,BD與CE交于點O,且AO平分∠BAC.
(1)圖中有多少對全等三角形?請你一一列舉出來(不要求說明理由).
(2)小明說:欲說明BE=CD,可先說明△AOE≌△AOD得到AE=AD,再說明△ADB≌△AEC得到AB=AC,然后利用等式的性質(zhì)即可得到BE=CD,請問他的說法正確嗎?如果不正確,請說明理由;如果正確,請按他的思路寫出推導過程.
(3)要得到BE=CD,你還有其他的思路嗎?請仿照小明的說法具體說一說你的想法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠1=∠2,DE⊥BC,AB⊥BC,試說明:∠A=∠3.
解:因為DE⊥BC,AB⊥BC(已知),
所以∠DEC=∠ABC=90°(____________),
所以DE∥AB(____________________),
所以∠2=________(____________________),
∠1=________(____________________).
因為∠1=∠2(已知),
所以∠A=∠3(等量代換).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個盒子里有完全相同的三個小球,球上分別標上數(shù)字﹣1、1、2.隨機摸出一個小球(不放回)其數(shù)字記為p,再隨機摸出另一個小球其數(shù)字記為q,則滿足關(guān)于x的方程x2+px+q=0有實數(shù)根的概率是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學七年級一班在一次活動中要分為四個組,其中第一組有x人,第二組比第一組的少5人,第三組比一、二組的和少15人,第四組與第一組2倍的和是34.
(1)用含x的代數(shù)式表示第二、三、四組的人數(shù),把答案填在下表相應(yīng)的位置:
第一組 | 第二組 | 第三組 | 第四組 |
x人 |
|
|
|
x=12 |
|
|
|
(2)求x=12時第二、三、四組的人數(shù),把答案填在上表相應(yīng)的位置;
(3)求七年級一班的總?cè)藬?shù)(用含x的代數(shù)式表示),并求x=10時,該班的總?cè)藬?shù);
(4)x能否等于13,為什么?x能否等于6,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y= (x﹣1)2﹣3.
(1)寫出拋物線的開口方向、對稱軸;
(2)函數(shù)y有最大值還是最小值?并求出這個最大(。┲担
(3)設(shè)拋物線與y軸的交點為P,與x軸的交點為Q,求直線PQ的函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com