【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字﹣1、1、2.隨機(jī)摸出一個(gè)小球(不放回)其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球其數(shù)字記為q,則滿足關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是(  )
A.
B.
C.
D.

【答案】A
【解析】解:畫樹狀圖得: ∵x2+px+q=0有實(shí)數(shù)根,
∴△=b2﹣4ac=p2﹣4q≥0,
∵共有6種等可能的結(jié)果,滿足關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的有(1,﹣1),(2,﹣1),(2,1)共3種情況,
∴滿足關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是:
故選A.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用求根公式和列表法與樹狀圖法的相關(guān)知識(shí)可以得到問題的答案,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根;當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若要使得圖中平面展開圖折疊成正方體后,相對(duì)面上的兩個(gè)數(shù)之和為5,求x+y+z的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCDEC中,ABDE.若添加條件后使得ABC≌△DEC,則在下列條件中,不能添加的是(  )

A. BCEC,BE B. BCECACDC

C. BE,AD D. BCEC,AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點(diǎn)C在線段AB上,線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn).

(1)求線段MN的長度;

(2)根據(jù)第(1)題的計(jì)算過程和結(jié)果,設(shè)AC+BC=a,其他條件不變,求MN的長度;

(3)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P2cm/s的速度沿AB向右運(yùn)動(dòng),終點(diǎn)為B,點(diǎn)Q1cm/s的速度沿AB向左運(yùn)動(dòng),終點(diǎn)為A,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),求運(yùn)動(dòng)多少秒時(shí),C、P、Q三點(diǎn)有一點(diǎn)恰好是以另兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1,∠2互為補(bǔ)角,且∠3=B,

(1)求證:∠AFE=ACB

(2)CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(c2012防城港)某奶品生產(chǎn)企業(yè),2010年對(duì)鐵鋅牛奶、酸牛奶、純牛奶三個(gè)品種的生產(chǎn)情況進(jìn)行了統(tǒng)計(jì),繪制了圖1、2的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:
(1)酸牛奶生產(chǎn)了多少萬噸?把圖1補(bǔ)充完整;酸牛奶在圖2所對(duì)應(yīng)的圓心角是多少度?
(2)由于市場不斷需求,據(jù)統(tǒng)計(jì),2011年的生產(chǎn)量比2010年增長20%,按照這樣的增長速度,請(qǐng)你估算2012年酸牛奶的生產(chǎn)量是多少萬噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,PAD邊上一點(diǎn),沿直線BP將△ABP翻折至△EBP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E),PECD相交于點(diǎn)O,且OE=OD.

(1)求證:PE=DH;

(2)若AB=10,BC=8,求DP的長.

【答案】1見解析;2

【解析】試題分析:(1) 先證明DOP≌△EOH再利用等量代換得到PE=DH.

(2) 設(shè)DP=x, RtBCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.

試題解析:

1)解:證明:OD=OE,D=∠E=90°,DOP=∠EOH,

∴△DOP≌△EOH,

OP=OH,

PO+OE=OH+OD,

PE=DH.

2)解:設(shè)DP=x,則EH=x,BH=10﹣x

CH=CDDH=CDPE=10﹣8﹣x=2+x,

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2

x=,

DP=

型】解答
結(jié)束】
25

【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價(jià)比B品牌每套套裝進(jìn)價(jià)多2.5元,已知用200元購進(jìn)A種套裝的數(shù)量是用75元購進(jìn)B種套裝數(shù)量的2倍.

(1)求A,B兩種品牌套裝每套進(jìn)價(jià)分別為多少元?

(2)若A品牌套裝每套售價(jià)為13元,B品牌套裝每套售價(jià)為9.5元,店老板決定,購進(jìn)B品牌的數(shù)量比購進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進(jìn)A品牌工具套裝多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EFG≌△NMH, FM是對(duì)應(yīng)角.

1)寫出相等的線段與相等的角;

2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MNHG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表反映了x與y之間存在某種函數(shù)關(guān)系,現(xiàn)給出了幾種可能的函數(shù)關(guān)系式: y=x+7,y=x﹣5,y=﹣ ,y= x﹣1

x

﹣6

﹣5

3

4

y

1

1.2

﹣2

﹣1.5


(1)從所給出的幾個(gè)式子中選出一個(gè)你認(rèn)為滿足上表要求的函數(shù)表達(dá)式:
(2)請(qǐng)說明你選擇這個(gè)函數(shù)表達(dá)式的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案