【題目】在△ABC中,點D,E,F分別在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.
(1)如圖1,當DE=DF時,圖1中是否存在與AB相等的線段?若存在,請找出,并加以證明;若不存在,說明理由;
(2)如圖2,當DE=kDF(其中0<k<1)時,若∠A=90°,AF=m,求BD的長(用含k,m的式子表示).
【答案】(1)AB=BE;(2)BD=.
【解析】
試題分析:(1)如圖1,連結AE.由DE=DF,得到∠DEF=∠DFE,由∠ADF+∠DEC=180°,得到∠ADF=∠DEB.由∠AFE=∠BDE,得到∠AFE+∠ADE=180°,得到A、D、E、F四點共圓,由圓周角定理得出∠DAE=∠DFE=∠DEF,∠ADF=∠AEF.再由∠ADF=∠DEB=∠AEF,得出∠AEF+∠AED=∠DEB+∠AED,則∠AEB=∠DEF=∠BAE,由等角對等邊得出AB=BE;
(2)如圖2,連結AE.由A、D、E、F四點共圓,得到∠ADF=∠AEF,由∠DAF=90°,得到∠DEF=90°,再證明∠DEB=∠AEF.又∠AFE=∠BDE,得到△BDE∽△AFE,利用相似三角形對應邊成比例得到.在Rt△DEF中,利用勾股定理求出EF=DF,然后將AF=m,DE=kDF代入,計算即可求解.
試題解析:(1)如圖1,連結AE.∵DE=DF,∴∠DEF=∠DFE,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB,∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四點共圓,∴∠DAE=∠DFE=∠DEF,∠ADF=∠AEF,∵∠ADF=∠DEB=∠AEF,∴∠AEF+∠AED=∠DEB+∠AED,∴∠AEB=∠DEF=∠BAE,∴AB=BE;
(2)如圖2,連結AE.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四點共圓,∴∠ADF=∠AEF,∵∠DAF=90°,∴∠DEF=90°,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB,∵∠ADF=∠AEF,∴∠DEB=∠AEF,在△BDE與△AFE中,∵∠DEB=∠AEF,∠BDE=∠AFE,∴△BDE∽△AFE,∴,在直角△DEF中,∵∠DEF=90°,DE=kDF,∴EF==DF,∴=,∴BD=.
科目:初中數學 來源: 題型:
【題目】如圖①,∠QPN的頂點P在正方形ABCD兩條對角線的交點處,∠QPN=α,將∠QPN繞點P旋轉,旋轉過程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點E和點F(點F與點C,D不重合).
(1)如圖①,當α=90°時,DE,DF,AD之間滿足的數量關系是 ;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當α=60°時,(1)中的結論變?yōu)镈E+DF=AD,請給出證明;
(3)在(2)的條件下,若旋轉過程中∠QPN的邊PQ與射線AD交于點E,其他條件不變,探究在整個運動變化過程中,DE,DF,AD之間滿足的數量關系,直接寫出結論,不用加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】己知拋物線y=ax2+bx+c的對稱軸是直線x=-1,若關于x的一元二次方程ax2+bx+c=0的一個根為2,則該方程的另一個根為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了加強學生的安全意識,某校組織了學生參加安全知識競賽.從中抽取了部分學生成績(得分數取正整數,滿分為100分)進行統(tǒng)計,繪制統(tǒng)計頻數分布直方圖(未完成)和扇形圖如下,請解答下列問題:
(1)A組的頻數a比B組的頻數b小24,樣本容量 , a為:
(2)n為°,E組所占比例為%:
(3)補全頻數分布直方圖;
(4)若成績在80分以上優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀學生有名.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國共產黨第十八次全國代表大會將于2012年10月15日至18日在北京召開.據統(tǒng)計,截至2011年底,全國的共產黨員人數已超過80300000,這個數據用科學記數法可表示為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分線。
(1)求∠DAE的度數;
(2)指出AD是哪幾個三角形的高。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一只跳蚤在第一象限及x軸、y軸上跳動,在第一秒鐘,它從原點跳動到(0,1),然后接著按圖中箭頭所示方向跳動:即(0,0)→(0,1) →(1,1)→(1,0)→…,且每秒跳動一個單位,那么第35秒時跳蚤所在位置的坐標是( )
A.(4,0)
B.(5,0)
C.(0,5)
D.(5,5)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com