【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交AB、AC于點(diǎn)D、E.

(1)若∠A = 40°,求∠DCB的度數(shù).

(2)若AE=4,△DCB的周長(zhǎng)為13,求△ABC的周長(zhǎng).

【答案】(1)30°(2)21

【解析】試題分析:(1)由在△ABC中,AB=AC,∠A=40°,根據(jù)等腰三角形的性質(zhì),可求得∠ACB的度數(shù),又由線段垂直平分線的性質(zhì),可得AD=CD,即可求得∠ACD的度數(shù),繼而求得答案;
(2)由AE=4,△DCB的周長(zhǎng)為13,即可求得△ABC的周長(zhǎng).

試題解析:

(1)在△ABC中 ∵AB=AC ,∠A=40°

∴∠ABC =∠ACB= =70°,

DE垂直平分AC,

DA=DC,

∴在△DAC中,∠DCA=∠A=40°,

∴∠DCB=∠ACB-∠ACD=70°-40°=30°,

(2)∵DE垂直平分AC,

DA=DC,EC=EA=4,

∴AC=2AE=8,

C△ABC=ACBCBD+DA=8+BCBD+DC=8+C△CBD=8+13=21.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,MBC邊(不含端點(diǎn)B、C)上任意一點(diǎn),PBC延長(zhǎng)線上一點(diǎn),N∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME

正方形ABCD中,∠B=∠BCD=90°,AB=BC

∴∠NMC=180°—∠AMN—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE

(下面請(qǐng)你完成余下的證明過(guò)程)

2)若將(1)中的正方形ABCD”改為正三角形ABC”(如圖2,N∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.

3)若將(1)中的正方形ABCD”改為邊形ABCD…X”,請(qǐng)你作出猜想:當(dāng)∠AMN=°時(shí),結(jié)論AM=MN仍然成立.(直接寫(xiě)出答案,不需要證明)

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:5x2x4﹣(﹣2x32+x8÷x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程2y273y的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)分別是( 。

A.2,﹣3,﹣7B.2,﹣3,﹣7C.2,﹣73D.2,﹣3,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,△ABC、DCE均為等邊三角形,且B、C、E三點(diǎn)在一條直線上,BDAE相交于O點(diǎn).

1)求證:△BCD≌△ACE;

2)求∠DOE的度數(shù);

3)連接MN,求證:MNBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x=2是方程8﹣2x=ax的解,則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016山東濰坊第23題)旅游公司在景區(qū)內(nèi)配置了50輛觀光車(chē)共游客租賃使用,假定每輛觀光車(chē)一天內(nèi)最多只能出租一次,且每輛車(chē)的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營(yíng)運(yùn)規(guī)律如下:當(dāng)x不超過(guò)100元時(shí),觀光車(chē)能全部租出;當(dāng)x超過(guò)100元時(shí),每輛車(chē)的日租金每增加5元,租出去的觀光車(chē)就會(huì)減少1輛.已知所有觀光車(chē)每天的管理費(fèi)是1100元.

(1)優(yōu)惠活動(dòng)期間,為使觀光車(chē)全部租出且每天的凈收入為正,則每輛車(chē)的日租金至少應(yīng)為多少元?(注:凈收入=租車(chē)收入﹣管理費(fèi))

(2)當(dāng)每輛車(chē)的日租金為多少元時(shí),每天的凈收入最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式從左到右的變形,是因式分解的為(

A6ab=2a·3b B(x+5)(x2)=x2+3x10

Cx28x+16=(x4)2 Dx29+6x=(x3)(x+3)+6x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m是兩位數(shù),n是一位數(shù),把m接寫(xiě)在n的后面,就成為一個(gè)三位數(shù).這個(gè)三位數(shù)可表示成(  。

A. 10n + m B. nm C. 100n + m D. n + 10m

查看答案和解析>>

同步練習(xí)冊(cè)答案