【題目】已知:如圖,E點是正方形ABCD的邊AB上一點,AB4,DE6,△DAE逆時針旋轉(zhuǎn)后能夠與△DCF重合.

1)旋轉(zhuǎn)中心是   .旋轉(zhuǎn)角為   度.

2)請你判斷△DFE的形狀,并說明理由.

3)求四邊形DEBF的周長和面積.

【答案】1D90;(2) △DFE的形狀是等腰直角三角形,見解析;(320,16

【解析】

1)由題意可知要確定旋轉(zhuǎn)中心及旋轉(zhuǎn)的角度,首先確定哪是對應(yīng)點,即可確定旋轉(zhuǎn)中心以及旋轉(zhuǎn)角;

2)根據(jù)旋轉(zhuǎn)的性質(zhì),可以得到旋轉(zhuǎn)前后的兩個圖形全等,以及旋轉(zhuǎn)角的定義即可作出判斷;

3)由題意根據(jù)△DAE≌△DCF,可以得到:AECFDEDF,則四邊形DEBF的周長就是正方形的三邊的和與DE的和.

解:(1)由題意可知旋轉(zhuǎn)中心是點D

即為旋轉(zhuǎn)角為90度.

2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得:△DAE≌△DCF,則DEDF,∠EDF∠ADC90°

△DFE的形狀是等腰直角三角形.

3)四邊形DEBF的周長是BE+BC+CF+DF+DEAB+BC+DE+DF4+4+6+6=20;

由題意可知四邊形DEBF的面積等于正方形ABCD的面積=16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:

(1)甲,乙兩組工作一天,商店各應(yīng)付多少錢?

(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?

(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織340名師生進行長途考察活動,帶有行李170件,計劃租用甲、乙兩種型號的汽車共10輛.經(jīng)了解,甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李.

1)請你幫助學(xué)校設(shè)計所有可行的租車方案.

2)如果甲車的租金為每輛2 000元,乙車的租金為每輛1 800元,問哪種可行方案使租車費用最?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)性質(zhì)探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.

猜想結(jié)論:(要求用文字語言敘述)

寫出證明過程(先畫出圖形,寫出已知、求證)

(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈.據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準確地放入相應(yīng)的路口,還會感應(yīng)避讓障礙物,自動歸隊取包裹,沒電的時候還會自己找充電樁充電.某快遞公司啟用40A種機器人、150B種機器人分揀快遞包裹,A、B兩種機器人全部投入工作,1小時共可以分揀0.77萬件包裹;若全部A種機器人工作1.5小時,全部B種機器人工作2小時,一共可以分揀1.38萬件包裹.

1)求兩種機器人每臺每小時各分揀多少件包裹?

2)為進一步提高效率,快遞公司計劃再購進AB兩種機器人共100臺.若要保證新購進的這批機器人每小時的總分揀量不少于5500件,求至少應(yīng)購進A種機器人多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進,廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計,目前廣東5G基站的數(shù)量約1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達到17.34萬座。

1)計劃到2020年底,全省5G基站的數(shù)量是多少萬座?;

2)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求完成下列證明

已知:如圖,ABCD,直線AECD于點C,BAC+CDF=180°.

求證:AEDF.

證明: ABCD____________________________ ,

∴∠BAC=DCE__________________________________________________________________________.

BAC+CDF=180°(已知),

____________ +CDF=180°____________________________________.

AEDF______________________________________________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,∠ADC的平分線交直線BC于點E、交AB的延長線于點F,連接AC.

(1)如圖1,若∠ADC=90°,G是EF的中點,連接AG、CG.

①求證:BE=BF;

②請判斷△AGC的形狀,并說明理由.

(2)如圖2,若∠ADC=60°,將線段FB繞點F順時針旋轉(zhuǎn)60°至FG,連接AG、CG,判斷△AGC的形狀.(直接寫出結(jié)論不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,平分于點上一點,經(jīng)過點,分別交,于點,,連接于點.

(1)求證:的切線;

(2)設(shè),試用含的代數(shù)式表示線段的長;

(3)若,,求的長.

查看答案和解析>>

同步練習(xí)冊答案