【題目】平面直角坐標系xOy中,點AB的橫坐標分別為aa+2,二次函數(shù)的圖象經(jīng)過點A、B,且a、m滿足2am=dd為常數(shù)).

(1)若一次函數(shù)y1=kx+b的圖象經(jīng)過A、B兩點.

當(dāng)a=1、d=﹣1時,求k的值;

y1x的增大而減小,求d的取值范圍;

(2)當(dāng)d=﹣4a≠﹣2、a≠﹣4時,判斷直線ABx軸的位置關(guān)系,并說明理由;

(3)點A、B的位置隨著a的變化而變化,設(shè)點A、B運動的路線與y軸分別相交于點CD,線段CD的長度會發(fā)生變化嗎?如果不變,求出CD的長;如果變化,請說明理由.

【答案】1)①k的值為﹣3;②d>﹣4;(2ABx軸;(3)線段CD的長隨m的值的變化而變化,DC=|82m|.

【解析】試題分析:(1)①當(dāng)a=1、d=﹣1時,m=2ad=3,于是得到拋物線的解析式,然后求得點A和點B的坐標,最后將點A和點B的坐標代入直線AB的解析式求得k的值即可;

x=a,x=a+2代入拋物線的解析式可求得點A和點B的縱坐標,然后依據(jù)y1隨著x的增大而減小,可得到﹣(am)(a+2)>﹣(a+2﹣m)(a+4),結(jié)合已知條件2am=d,可求得d的取值范圍;

(2)由d=﹣4可得到m=2a+4,則拋物線的解析式為y=﹣x2+(2a+2)x+4a+8,然后將x=a、x=a+2代入拋物線的解析式可求得點A和點B的縱坐標,最后依據(jù)點A和點B的縱坐標可判斷出ABx軸的位置關(guān)系;

(3)先求得點A和點B的坐標,于是得到點A和點B運動的路線與字母a的函數(shù)關(guān)系式,則點C(0,2m),D(0,4m﹣8),于是可得到CDm的關(guān)系式.

試題解析:解:(1)①當(dāng)a=1、d=﹣1時,m=2ad=3,所以二次函數(shù)的表達式是y=﹣x2+x+6.

a=1,∴A的橫坐標為1,點B的橫坐標為3,把x=1代入拋物線的解析式得:y=6,把x=3代入拋物線的解析式得:y=0,∴A(1,6),B(3,0).

將點A和點B的坐標代入直線的解析式得:,解得:,所以k的值為﹣3.

②∵y=﹣x2+(m﹣2)x+2m=﹣(xm)(x+2),∴當(dāng)x=a時,y=﹣(am)(a+2);當(dāng)x=a+2時,y=﹣(a+2﹣4)(a+4),∵y1隨著x的增大而減小,且aa+2,∴﹣(am)(a+2)>﹣(a+2﹣m)(a+4),解得:2am>﹣4,又∵2am=d,∴d的取值范圍為d>﹣4.

(2)∵d=﹣4a≠﹣2、a≠﹣4,2am=d,∴m=2a+4,∴二次函數(shù)的關(guān)系式為y=﹣x2+(2a+2)x+4a+8.

x=a代入拋物線的解析式得:y=a2+6a+8.

x=a+2代入拋物線的解析式得:y=a2+6a+8,∴Aa,a2+6a+8)、Ba+2,a2+6a+8).

A、點B的縱坐標相同,ABx軸.

(3)線段CD的長隨m的值的變化而變化.

y=﹣x2+(m﹣2)x+2m過點A、點B,∴當(dāng)x=a時,y=﹣a2+(m﹣2)a+2m,當(dāng)x=a+2時,y=﹣(a+2)2+(m﹣2)(a+2)+2m,∴Aa,﹣a2+(m﹣2)a+2m)、Ba+2,﹣(a+2)2+(m﹣2)(a+2)+2m),∴A運動的路線是的函數(shù)關(guān)系式為y1=﹣a2+(m﹣2)a+2m,點B運動的路線的函數(shù)關(guān)系式為y2=﹣(a+2)2+(m﹣2)(a+2)+2m,∴C(0,2m),D(0,4m﹣8),∴DC=|2m﹣(4m﹣8)|=|8﹣2m|,∴線段CD的長隨m的值的變化而變化.

當(dāng)8﹣2m=0時,m=4時,CD=|8﹣2m|=0,即點C與點D重合;當(dāng)m>4時,CD=2m﹣8;當(dāng)m<4時,CD=8﹣2m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)yax2+bxy=﹣bx+a的圖象可能是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問題:

(1)已知點,,表示的數(shù)分別為,觀察數(shù)軸,,兩點之間的距離為_______;與點的距離為的點表示的數(shù)是_______;

(2)若將數(shù)軸折疊,使得點與點合,則與點重合的點表示的數(shù)是______;若此數(shù)軸上,兩點之間的距離為(的左側(cè)),且點與點重合時,點也恰好重合,則兩點表示的數(shù)分別是:_______,_______.

(3)若數(shù)軸上兩點間的距離為(左側(cè)),表示數(shù)的點到,兩點的距離相等,則將數(shù)軸折疊,使得點與點重合時,,兩點表示的數(shù)分別為:______,______.(用含,的式子表示這兩個數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖A是線段BC上一點,△ABD△ACE都是等邊三角形

(1)連結(jié)BE,DC,求證:BEDC.

(2)如圖△ABD繞點A順時針旋轉(zhuǎn)得到△AB′D′.

當(dāng)旋轉(zhuǎn)角為__ _度時,AD′落在AE

的條件下,延長DD′CE于點P,連結(jié)BD′CD′.當(dāng)線段AB,AC滿足什么數(shù)量關(guān)系時,△BDD′△CPD′全等?并給予證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若多項式的次數(shù)為,項數(shù)為;當(dāng)時,此多項式的值為.

1)分別寫出所表示的數(shù),并計算代數(shù)式的值;

2)設(shè)有理數(shù)0,,,在數(shù)軸上對應(yīng)的點分別是點,點,點,點.

①請比較線段與線段的大小.

②若點是線段上的一動點,比較的大小,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題原型)如圖,在中,對角線的垂直平分線于點,交于點,交于點.求證:四邊形是菱形.

(小海的證法)證明:

的垂直平分線,

,(第一步)

,(第二步)

.(第三步)

四邊形是平行四邊形.(第四步)

四邊形是菱形. (第五步)

(老師評析)小海利用對角線互相平分證明了四邊形是平行四邊形,再利用對角線互相垂直證明它是菱形,可惜有一步錯了.

(挑錯改錯)(1)小海的證明過程在第________步上開始出現(xiàn)了錯誤.

2)請你根據(jù)小海的證題思路寫出此題的正確解答過程,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國新版高鐵復(fù)興號率先在北京南站和上海虹橋站雙向首發(fā)復(fù)興號高鐵從某車站出發(fā),在行駛過程中速度(千米/分鐘)與時間(分鐘)的函數(shù)關(guān)系如圖所示.

1)當(dāng)時,求關(guān)于工的函數(shù)表達式,

2)求點的坐標.

3)求高鐵在時間段行駛的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)的圖象經(jīng)過點和點.過點軸,垂足為點,過點軸,垂足為點,連結(jié)、、、.的橫坐標為.

1)求的值.

2)若的面積為.

①求點的坐標.

②在平面內(nèi)存在點,使得以點、、、為頂點的四邊形是平行四邊形,直接寫出

符合條件的所有點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)的圖象交于

1)求出m、n的值;

2)直接寫出不等式的解集;

3)求出的面積.

查看答案和解析>>

同步練習(xí)冊答案