如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,動點(diǎn)P從B點(diǎn)出發(fā),沿線段BC向點(diǎn)C作勻速運(yùn)動;動點(diǎn)Q從點(diǎn)D出發(fā),沿線段DA向點(diǎn)A作勻速運(yùn)動.過Q點(diǎn)垂直于AD的射線交AC于點(diǎn)M,交BC于點(diǎn)N.P、Q兩點(diǎn)同時出發(fā),速度???為每秒1個單位長度.當(dāng)Q點(diǎn)運(yùn)動到A點(diǎn),P、Q兩點(diǎn)同時停止運(yùn)動.設(shè)點(diǎn)Q運(yùn)動的時間為t秒.
(1)求NC,MC的長(用t的代數(shù)式表示);
(2)當(dāng)t為何值時,四邊形PCDQ構(gòu)成平行四邊形;
(3)是否存在某一時刻,使射線QN恰好將△ABC的面積和周長同時平分?若存在,求出此時t的值;若不存在,請說明理由;
(4)探究:t為何值時,△PMC為等腰三角形.

【答案】分析:(1)依據(jù)題意易知四邊形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,CB、CN已知,根據(jù)勾股定理可求CA=5,即可表示CM;
(2)四邊形PCDQ構(gòu)成平行四邊形就是PC=DQ,列方程4-t=t即解;
(3)可先根據(jù)QN平分△ABC的周長,得出MC+NC=AM+BN+AB,據(jù)此來求出t的值.然后根據(jù)得出的t的值,求出△MNC的面積,即可判斷出△MNC的面積是否為△ABC面積的一半,由此可得出是否存在符合條件的t值.
(4)由于等腰三角形的兩腰不確定,因此分三種情況進(jìn)行討論:
①當(dāng)MP=MC時,那么PC=2NC,據(jù)此可求出t的值.
②當(dāng)CM=CP時,可根據(jù)CM和CP的表達(dá)式以及題設(shè)的等量關(guān)系來求出t的值.
③當(dāng)MP=PC時,在直角三角形MNP中,先用t表示出三邊的長,然后根據(jù)勾股定理即可得出t的值.
綜上所述可得出符合條件的t的值.
解答:解:(1)∵AQ=3-t,
∴CN=4-(3-t)=1+t.
在Rt△ABC中,AC2=AB2+BC2=32+42,
∴AC=5.
在Rt△MNC中,cos∠NCM==,CM=;

(2)由于四邊形PCDQ構(gòu)成平行四邊形,
∴PC=QD,即4-t=t,
解得t=2.

(3)如果射線QN將△ABC的周長平分,則有:
MC+NC=AM+BN+AB,
即:(1+t)+1+t=(3+4+5),
解得:t=.(5分)
而MN=NC=(1+t),
∴S△MNC=(1+t)2=(1+t)2,
當(dāng)t=時,S△MNC=(1+t)2=×4×3.
∴不存在某一時刻t,使射線QN恰好將△ABC的面積和周長同時平分;

(4)①當(dāng)MP=MC時;則有:NP=NC,
即PC=2NC∴4-t=2(1+t),
解得:t=;
②當(dāng)CM=CP時;則有:(1+t)=4-t,
解得:t=
③當(dāng)PM=PC時;則有:在Rt△MNP中,PM2=MN2+PN2,
而MN=NC=(1+t),
PN=|PC-NC|=|(4-t)-(1+t)|=|3-2t|,
∴[(1+t)]2+(3-2t)2=(4-t)2,
解得:t1=,t2=-1(舍去)
∴當(dāng)t=,t=,t=時,△PMC為等腰三角形.
點(diǎn)評:此題繁雜,難度中等,考查平行四邊形性質(zhì)及等腰三角形性質(zhì).考查學(xué)生分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點(diǎn)E是AB邊上一點(diǎn),AE=BC,DE⊥EC,取DC的中點(diǎn)F,連接AF、BF.
(1)求證:AD=BE;
(2)試判斷△ABF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長FE交BC于點(diǎn)G,點(diǎn)G恰好是BC的中點(diǎn),若AB=6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點(diǎn)E,連接CE,將△BCE繞點(diǎn)C順時針方向旋轉(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)若EF=6,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點(diǎn),AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊答案