【題目】有一塊矩形地塊,米,米,為美觀,擬種植不同的花卉,如圖所示,將矩形分割成四個(gè)等腰梯形及一個(gè)矩形,其中梯形的高相等,均為米.現(xiàn)決定在等腰梯形和中種植甲種花卉;在等腰梯形和中種植乙種花卉;在矩形中種植丙種花卉.甲、乙、丙三種花卉的種植成本分別為20元/米、60 元/米、40元/米,設(shè)三種花卉的種植總成本為元.
(1)當(dāng)時(shí),求種植總成本;
(2)求種植總成本與的函數(shù)表達(dá)式,并寫出自變量的取值范圍;
(3)若甲、乙兩種花卉的種植面積之差不超過120米,求三種花卉的最低種植總成本.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為120°的扇形OAB中,半徑OA=2,C為的中點(diǎn),D為OA上任意一點(diǎn)(不與點(diǎn)O、A重合),則圖中陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),交y軸于點(diǎn)C,AB=4,對(duì)稱軸是直線x=﹣1.
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)連接AC,E是線段OC上一點(diǎn),點(diǎn)E關(guān)于直線x=﹣1的對(duì)稱點(diǎn)F正好落在AC上,求點(diǎn)F的坐標(biāo);
(3)動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A即停止運(yùn)動(dòng),過點(diǎn)M作x軸的垂線交拋物線于點(diǎn)N,交線段AC于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
①連接BC,若△BOC與△AMN相似,請(qǐng)直接寫出t的值;
②△AOQ能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是用黑色棋子擺成的美麗圖案,按照這樣的規(guī)律擺下去,第10個(gè)這樣的圖案需要黑色棋子的個(gè)數(shù)為( )
A.148B.152C.174D.202
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊的邊長(zhǎng)為3,點(diǎn)在邊上,,線段在邊上運(yùn)動(dòng),,有下列結(jié)論:
①與可能相等;②與可能相似;③四邊形面積的最大值為;④四邊形周長(zhǎng)的最小值為.其中,正確結(jié)論的序號(hào)為( )
A.①④B.②④C.①③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳館普通票價(jià)20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:
①金卡售價(jià)600元/張,每次憑卡不再收費(fèi).
②銀卡售價(jià)150元/張,每次憑卡另收10元.
暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時(shí),所需總費(fèi)用為y元.
(1)分別寫出選擇銀卡、普通票消費(fèi)時(shí),y與x之間的函數(shù)關(guān)系式;
(2)在同一坐標(biāo)系中,若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖象如圖所示,請(qǐng)求出點(diǎn)A、B、C的坐標(biāo);
(3)請(qǐng)根據(jù)函數(shù)圖象,直接寫出選擇哪種消費(fèi)方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,半徑為2的與軸的正半軸交于點(diǎn),點(diǎn)是上一動(dòng)點(diǎn),點(diǎn)為弦的中點(diǎn),直線與軸、軸分別交于點(diǎn)、,則面積的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,是銳角,于點(diǎn),是的中點(diǎn),連接;若,則的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在平面直角坐標(biāo)系中, 點(diǎn)坐標(biāo)為, 點(diǎn)在軸正半軸上,直線經(jīng)過點(diǎn)、,且,
(1)若點(diǎn)的坐標(biāo)為,求直線的表達(dá)式;
(2)反比例函數(shù)的圖像與直線交于第一象限的、兩點(diǎn),當(dāng)時(shí),求的值(用含的式子表示);
(3)在(1)的條件下,設(shè)線段的中點(diǎn)為,過點(diǎn)作軸的垂線,垂足為,交反比例函數(shù)的圖像于點(diǎn),分別連接、, 當(dāng)與相似時(shí),請(qǐng)直接寫出滿足條件的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com