如圖,在矩形OABC中,OA=8,OC=4,OA、OC分別在x軸與y軸上,D為OA上一點,且CD=AD.

(1)求點D的坐標;
(2)若經(jīng)過B、C、D三點的拋物線與x軸的另一個交點為E,請直接寫出點E的坐標;
(3)在(2)中的拋物線上位于x軸上方的部分,是否存在一點P,使△PBC的面積等于梯形DCBE的面積?若存在,求出點P的坐標,若不存在,請說明理由.
(1)D(3,0);(2)E(5,0);(3)不存在

試題分析:(1)設(shè)OD=x,則AD=CD=8-x ,在Rt△OCD中,根據(jù)勾股定理即可列方程求解;
(2)由題意知,拋物線的對稱軸為直線x=4,根據(jù)拋物線的對稱性即可求得結(jié)果;
(3)若存在這樣的P,則由S梯形=20得S△PBC·BC·h=20可求得h=5,根據(jù)待定系數(shù)法求得拋物線函數(shù)關(guān)系式,從而得到頂點坐標,即可得到頂點到BC的距離為4+<5,即可作出判斷.
(1)設(shè)OD=x,則AD=CD=8-x
Rt△OCD中,(8-x)2=x2+42,得x=3    
∴OD=3
∴D(3,0)    
(2)由題意知,拋物線的對稱軸為直線x=4     
∵D(3,0), ∴另一交點E(5,0)
(3)若存在這樣的P,則由S梯形=20得S△PBC·BC·h=20.
∴h=5
∵B(8,-4), C(0,-4), D(3,0)
∴該拋物線函數(shù)關(guān)系式為:y=-x2x-4. 
頂點坐標為(4,
∴頂點到BC的距離為4+<5      
∴不存在這樣的點P, 使得△PBC的面積等于梯形DCBE的面積.
點評:本題知識點多,綜合性強,難度較大,一般是中考壓軸題,主要考查學生對二次函數(shù)的熟練掌握情況.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線C1的頂點為P, 與x軸相交于A、B兩點(點A在點B的左側(cè)),點B 的橫坐標是1.

(1)求a的值;
(2)如圖,拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物 線C2向右平移,平移后的拋物線記為C3,拋物線
C的頂點為M,當點P、M關(guān)于點O成中心對稱時,求拋物線C3的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分,其中第(1)小題5分,第(2)小題4分,第(3)小題3分)
已知拋物線過點A(-1,0),B(4,0),P(5,3),拋物線與y軸交于點C

(1)求二次函數(shù)的解析式;
(2)求tanAPC的值;
(3)在拋物線上求一點Q,過Q點作x軸的垂線,垂足為H,使得∠BQH=∠APC

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線
(1)用配方法將化成的形式;
(2)將此拋物線向右平移1個單位,再向上平移2個單位,求平移后所得拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,二次函數(shù)的圖象為拋物線,交x軸于A、B兩點,交y軸于C點.其中AC=,BC=,
(1)求二次函數(shù)的解析式;
(2)若P點為拋物線上一動點且在x軸下方運動,當以P為圓心,1為半徑的⊙P與直線BC相切時,求出符合條件的P點橫坐標;
(3)如圖2,若點E從點A出發(fā),以每秒3個單位的速度沿著AB向點B勻速運動,點F從點A出發(fā),以每秒個單位的速度沿著AC向點C勻速運動.兩點同時出發(fā),當其中一點到達終點時,另一點也隨之停止運動.過點E作AB的垂線交拋物線于點E′,作點F關(guān)于直線的對稱點F′.設(shè)點E的運動時間為t(s),點F′ 能恰好在拋物線嗎?若能,請直接寫出t的值;若不能,請說明理由.
    
圖1                       圖2                     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)的對稱軸為,則        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知,二次函數(shù)f(x)=ax2+bx+c的部分對應(yīng)值如下表,則f(-3)=    。
x
-2
-1
0
1
2
3
4
5
y
5
0
-3
-4
-3
0
5
12

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)用因式分解法解方程 x(x+1) =2(x+1) .
(2)已知二次函數(shù)的解析式為y=x2-4x-5,請你判斷此二次函數(shù)的圖象與x軸交點的個數(shù);并指出當y隨x的增大而增大時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將拋物線向右平移1個單位后,得到的拋物線的解析式是    

查看答案和解析>>

同步練習冊答案