【題目】在某次數(shù)學(xué)活動中,如圖有兩個(gè)可以自由轉(zhuǎn)動的轉(zhuǎn)盤AB,轉(zhuǎn)盤A被分成四個(gè)相同的扇形,分別標(biāo)有數(shù)字1、23、4,轉(zhuǎn)盤B被分成三個(gè)相同的扇形,分別標(biāo)有數(shù)字56、7.若是固定不變,轉(zhuǎn)動轉(zhuǎn)盤(如果指針指在等分線上,那么重新轉(zhuǎn)動,直至指針指在某個(gè)扇形區(qū)域內(nèi)為止)

1)若單獨(dú)自由轉(zhuǎn)動A盤,當(dāng)它停止時(shí),指針指向偶數(shù)區(qū)的概率是   

2)小明自由轉(zhuǎn)動A盤,小穎自由轉(zhuǎn)動B盤,當(dāng)兩個(gè)轉(zhuǎn)盤停止后,記下各個(gè)轉(zhuǎn)盤指針?biāo)竻^(qū)域內(nèi)對應(yīng)的數(shù)字,請用畫樹狀圖或列表法求所得兩數(shù)之積為10的倍數(shù)的概率.

【答案】1;(2.

【解析】

1)根據(jù)概率公式列式計(jì)算即可得解;

2)畫出樹狀圖,然后根據(jù)概率公式列式計(jì)算即可得解.

解:(1)∵指針指向1、2、3、4區(qū)是等可能情況,

∴指針指向偶數(shù)區(qū)的概率是:;

2)根據(jù)題意畫出樹狀圖如下:

一共有12種情況,兩數(shù)之積為10的倍數(shù)的情況有2種,

所以,P(兩數(shù)之積為10的倍數(shù))=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個(gè)三角形,設(shè)其三個(gè)內(nèi)角度數(shù)分別為,,若x,yz滿足,我們定義這個(gè)三角形為美好三角形.

(1)ABC中,若,,則ABC (不是”)美好三角形;

(2)如圖,銳角ABC是⊙O的內(nèi)接三角形,,,⊙O直徑為,求證:ABC為美好三角形;

(3)已知ABC為美好三角形,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某青年旅社有60間客房供游客居住,在旅游旺季,當(dāng)客房的定價(jià)為每天200元時(shí),所有客房都可以住滿.客房定價(jià)每提高10元,就會有1個(gè)客房空閑,對有游客入住的客房,旅社還需要對每個(gè)房間支出20/每天的維護(hù)費(fèi)用,設(shè)每間客房的定價(jià)提高了x元.

(1)填表(不需化簡)

入住的房間數(shù)量

房間價(jià)格

總維護(hù)費(fèi)用

提價(jià)前

60

200

60×20

提價(jià)后

  

  

  

(2)若該青年旅社希望每天純收入為14000元且能吸引更多的游客,則每間客房的定價(jià)應(yīng)為多少元?(純收入=總收入﹣維護(hù)費(fèi)用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MNAD相交于點(diǎn)N,連接BMDN.

1)求證:四邊形BMDN是菱形;

2)若AB=4,AD=8,求MD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.請根據(jù)你對這句話的理解,解決下面問題:若mnmn)是關(guān)于x的方程1﹣x﹣a)(x﹣b=0的兩根,且ab,則a、b、m、n的大小關(guān)系是( ).

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,∠ABC=45°,OC∥AD,ADBC的延長線于D,ABOCE.

(1)求證:AD是⊙O的切線;

(2)若⊙O的直徑為6,線段BC=2,求∠BAC的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙I是△ABC的內(nèi)切圓,切點(diǎn)分別是D、EF

1)若∠B50°,∠C70°,則∠DFE的度數(shù)為 ;

2)若∠DFE50°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖有一座拋物線形拱橋,橋下面在正常水位是AB20m,水位上升3m就達(dá)到警戒線CD,這是水面寬度為10m。

1)在如圖的坐標(biāo)系中求拋物線的解析式。

(2)若洪水到來時(shí),水位以每小時(shí)0.2m的速度上升,從警戒線開始,再持續(xù)多少小時(shí)才能到拱橋頂?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與直線相交于兩點(diǎn),且拋物線經(jīng)過點(diǎn)

1)求拋物線的解析式.

2)點(diǎn)是拋物線上的一個(gè)動點(diǎn)(不與點(diǎn)點(diǎn)重合),過點(diǎn)作直線軸于點(diǎn),交直線于點(diǎn).當(dāng)時(shí),求點(diǎn)坐標(biāo);

3)如圖所示,設(shè)拋物線與軸交于點(diǎn),在拋物線的第一象限內(nèi),是否存在一點(diǎn),使得四邊形的面積最大?若存在,請求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案