如圖,已知拋物線y=
1
2
x2+mx+n(n≠0)與直線y=x交于A、B兩點,與y軸交于點C,OA=OB,BCx軸.
(1)求拋物線的解析式;
(2)設(shè)D、E是線段AB上異于A、B的兩個動點(點E在點D的上方),DE=
2
,過D、E兩點分別作y軸的平行線,交拋物線于F、G,若設(shè)D點的橫坐標(biāo)為x,四邊形DEGF的面積為y,求x與y之間的關(guān)系式,寫出自變量x的取值范圍,并回答x為何值時,y有最大值.
(1)∵拋物線y=
1
2
x2+mx+n與y軸交于點C
∴C(0,n)
∵BCx軸
∴B點的縱坐標(biāo)為n
∵B、A在y=x上,且OA=OB
∴A(-n,-n),B(n,n)
1
2
n2+mn+n=n
1
2
n2-mn+n=-n

解得:n=0(舍去),n=-2;m=1
∴所求解析式為:y=
1
2
x2+x-2

(2)作DH⊥EG于H
∵D、E在直線y=x上
∴∠EDH=45°
∴DH=EH
∵DE=
2

∴DH=EH=1
∵D(x,x)
∴E(1+x,1+x)
∴F的縱坐標(biāo):
1
2
x2+x-2,
G的縱坐標(biāo):
1
2
(x+1)2+(x+1)-2
∴DF=x-(
1
2
x2+x-2)=2-
1
2
x2,EG=(x+1)-[
1
2
(x+1)2+(x+1)-2]=2-
1
2
(x+1)2
∴y=
1
2
[2-
1
2
x2+2-
1
2
(x+1)2]×1
y=-
1
2
x2-
1
2
x+
7
4
,
y=-
1
2
(x+
1
2
2+
15
8
,
∴x的取值范圍是-2<x<1.當(dāng)x=-
1
2
時,y最大值=
15
8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

兩個數(shù)相差左,設(shè)其中較大的一個數(shù)為x,那么它們的積y是如何隨x的變化而變化的?你能分別用函數(shù)表達式、表格和圖象表示這種變化嗎?
(1)用函數(shù)表達式表示:y=______;
(左)用表格表示:
x
y
(3)用圖象表示.
(4)根據(jù)以上三種表示方式回答下列問題:
①自變量x的取值范圍是什么?
②圖象的對稱軸和頂點坐標(biāo)分別是什么?
③如何描述y隨x的變化而變化的情況?
④你是分別通過哪種表示方式回答上面三個問題的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線y=
2
m
x2-2x
與x軸負半軸交于點A,頂點為B,且對稱軸與x軸交于點C.
(1)求點B的坐標(biāo)(用含m的代數(shù)式表示);
(2)D為BO中點,直線AD交y軸于E,若點E的坐標(biāo)為(0,2),求拋物線的解析式;
(3)在(2)的條件下,點M在直線BO上,且使得△AMC的周長最小,P在拋物線上,Q在直線BC上,若以A、M、P、Q為頂點的四邊形是平行四邊形,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,O為坐標(biāo)原點,二次函數(shù)y=-x2+bx+3的圖象經(jīng)過點A(-1,0),頂點為P.
(1)求這個二次函數(shù)的解析式;
(2)頂點P的坐標(biāo)為______;此拋物線與x軸的另一個交點B的坐標(biāo)為______;
(3)若拋物線與y軸交于C點,求△ABC的面積;
(4)在x軸上方的拋物線上是否存在一點D,使△ABD的面積等于△ABC的面積?若存在,請直接寫出點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是一學(xué)生擲鉛球時,鉛球行進高度y(cm)的函數(shù)圖象,點B為拋物線的最高點,則該同學(xué)的投擲成績?yōu)開_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,y軸是邊長為2的等邊△BAD的對稱軸,x軸是等腰△BDC的對稱軸.
(1)試求出經(jīng)過點A、點B,且對稱軸為直線x=1的拋物線的解析式;
(2)把△BDC沿著直線BD翻折后,得到△BDC'.
①問點C'是否在(1)中的拋物線上?
②設(shè)BC'交直線x=1于點Q.若點P是(1)中的拋物線上的一個動點,過點P作PT⊥直線x=1,垂足為T,問:在拋物線上是否存在著點P,使得以P、T、Q為頂點的三角形與△QDC'相似?若存在,寫出所有符合上述條件的點P的橫坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線經(jīng)過一直線y=3x-3與x軸、y軸的交點,并經(jīng)過(2,5)點.
求:(1)拋物線的解析式;
(2)拋物線的頂點坐標(biāo)及對稱軸;
(3)當(dāng)自變量x在什么范圍內(nèi)變化時,函數(shù)y隨x的增大而增大?
(4)在坐標(biāo)系內(nèi)畫出拋物線的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(-1,0)、B(3,0)兩點,拋物線交y軸于點C(0,3),點D為拋物線的頂點.直線y=x-1交拋物線于點M、N兩點,過線段MN上一點P作y軸的平行線交拋物線于點Q.
(1)求此拋物線的解析式及頂點D的坐標(biāo);
(2)問點P在何處時,線段PQ最長,最長為多少;
(3)設(shè)E為線段OC上的三等分點,連接EP,EQ,若EP=EQ,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCO是平行四邊形,AB=4,OB=2,拋物線過A、B、C三點,與x軸交于另一點D.一動點P以每秒1個單位長度的速度從B點出發(fā)沿BA向點A運動,運動到A停止,同時一動點Q從點D出發(fā),以每秒3個單位長度的速度沿DC向點C運動,與點P同時停止.
(1)求拋物線的解析式;
(2)若拋物線的對稱軸與AB交于點E,與x軸交于點F,當(dāng)點P運動時間t為何值時,四邊形POQE是等腰梯形?
(3)當(dāng)t為何值時,以P、B、O為頂點的三角形與以點Q、B、O為頂點的三角形相似?

查看答案和解析>>

同步練習(xí)冊答案