【題目】設AD為∠BAC的平分線,AB=8,AC=10,AD=6,E為AC上一點,AE=2,M為AE的中點,N為BC的中點,則MN=( 。
A.5B.C.D.
【答案】C
【解析】
如圖,取AC的中點F,連接FN,延長FN、AC交于點G,先利用三角形的中位線定理證得FN∥AB并求得FN的值;再證明△DGN∽△DAB,列出比例式求得DG的值,則AG的值可求;然后證明△NFM∽△GFA,列出比例式即可求得MN的值.
如圖,取AC的中點F,連接FN,延長FN、AC交于點G
∵AE=2,M為AE的中點,
∴AM=1
∵AF=AC=5,
∴FM=5﹣1=4
∵AF=CF,BN=CN
∴FN∥AB,FN=AB=×8=4=FM
∴∠G=∠BAG
又∠BAG=∠CAG
∴∠G=∠CAG
∴AF=GF=5
∵FN∥AB
∴△DGN∽△DAB
∴=
∵AD=6,GN=FG﹣FN=5﹣4=1,AB=8
∴=
∴DG=
∵==,∠NFM=∠GFA
∴△NFM∽△GFA
∴===
∴
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象與二次函數y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點.
(1)求一次函數和二次函數的解析式;
(2)根據圖象直接寫出使二次函數的值大于一次函數的值的x的取值范圍;
(3)設二次函數y=﹣x2+c的圖象與y軸相交于點C,連接AC,BC,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:有一組鄰邊相等的凸四邊形叫做“準菱形”.利用該定義完成以下各題:
(1) 理解
填空:如圖1,在四邊形ABCD中,若 (填一種情況),則四邊形ABCD是“準菱形”;
(2)應用
證明:對角線相等且互相平分的“準菱形”是正方形;(請畫出圖形,寫出已知,求證并證明)
(3) 拓展
如圖2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,將Rt△ABC沿∠ABC的平分線BP方向平移得到△DEF,連接AD,BF,若平移后的四邊形ABFD是“準菱形”,求線段BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了調查學生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學生進行了相關知識測試,獲得了他們的成績(百分制),并對數據(成績)進行了整理、描述和分析.下面給出了部分信息.
a.甲、乙兩校40名學生成績的頻數分布統(tǒng)計表如下:
成績x 學校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(說明:成績80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)
b.甲校成績在這一組的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績的平均分、中位數、眾數如下:
學校 | 平均分 | 中位數 | 眾數 |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根據以上信息,回答下列問題:
(1)寫出表中n的值;
(2)在此次測試中,某學生的成績是74分,在他所屬學校排在前20名,由表中數據可知該學生是_____________校的學生(填“甲”或“乙”),理由是__________;
(3)假設乙校800名學生都參加此次測試,估計成績優(yōu)秀的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了調查學生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學生進行了相關知識測試,獲得了他們的成績(百分制),并對數據(成績)進行了整理、描述和分析.下面給出了部分信息.
a.甲、乙兩校40名學生成績的頻數分布統(tǒng)計表如下:
成績x 學校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(說明:成績80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)
b.甲校成績在這一組的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績的平均分、中位數、眾數如下:
學校 | 平均分 | 中位數 | 眾數 |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根據以上信息,回答下列問題:
(1)寫出表中n的值;
(2)在此次測試中,某學生的成績是74分,在他所屬學校排在前20名,由表中數據可知該學生是_____________校的學生(填“甲”或“乙”),理由是__________;
(3)假設乙校800名學生都參加此次測試,估計成績優(yōu)秀的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AH是⊙O的直徑,點E,F分別在矩形ABCD的邊BC和CD上,B為直徑OH上一點,AE平分∠FAH交⊙O于點E,過點E的直線FG⊥AF,垂足為F.
(1)求證:直線FG是⊙O的切線;
(2)若AD=8,EB=5,求⊙O的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點為坐標原點,拋物線交軸于兩點,交軸于點,直線過拋物線的頂點,交軸于點,且.
(1)求和的值;
(2)如圖2,點在點和點之間的拋物線上,連接,過點作于點,過點作軸交于點,點在直線右側的軸上,連接,且,設點的橫坐標為,線段的長為,求與之間的函數關系式;
(3)如圖3,在(2)的條件下,連接,過點作于點,延長交于點,點在上,連接,若,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數的圖象與軸交于,兩點,與軸交于點.
(1)求這個二次函數的解析式;
(2)點是直線上方的拋物線上一動點,是否存在點,使得的面積最大?若存在,求出點的坐標;若不存在,說明理由;
(3)點是直線上方的拋物線上一動點,過點作軸于點.是否存在點,使以點,,為頂點的三角形與相似?若存在,直接寫出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小張同學學完統(tǒng)計知識后,隨機調查了她所在轄區(qū)若干名居民的年齡,將調查數據繪制成如下扇形統(tǒng)計圖和條形統(tǒng)計圖:
請根據以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
(1)小張同學共調查了_____名居民的年齡,扇形統(tǒng)計圖中a=_____;
(2)補全條形統(tǒng)計圖,并注明人數;
(3)若在該轄區(qū)中隨機抽取一人,那么這個人年齡是60歲及以上的概率為_____;
(4)若該轄區(qū)年齡在0~14歲的居民約有3500人,請估計該轄區(qū)居民人數是_____人.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com