【題目】已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=2.
(1)求該反比例函數的解析式;
(2)求三角形CDE的面積.
【答案】(1);(2)12.
【解析】
(1)根據正切的定義求出OA,證明△BAO∽△BEC,根據相似三角形的性質計算;
(2)求出直線AB的解析式,解方程組求出點D的坐標,根據三角形CDE的面積=三角形CBE的面積+三角形BED的面積計算即可.
解:(1)∵tan∠ABO=,OB=4,
∴OA=2,
∵OE=2,
∴BE=6,
∵AO∥CE,
∴△BAO∽△BEC,
∴=,即=,
解得,CE=3,即點C的坐標為(﹣2,3),
∴反比例函數的解析式為:;
(2)設直線AB的解析式為:y=kx+b,
則,
解得,,
則直線AB的解析式為:,
,
解得,,,
∴當D的坐標為(6,1),
∴三角形CDE的面積=三角形CBE的面積+三角形BED的面積
=×6×3+×6×1
=12.
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內有一點P,且PA=2,PB=,PC=1、求∠BPC度數的大小和等邊三角形ABC的邊長.
小剛同學的思路是:將△BPC繞點B逆時針旋轉60°,畫出旋轉后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠APB=150°,而∠BPC=∠AP′B=150°,進而求出等邊△ABC的邊長為,問題得到解決.
請你參考小剛同學的思路,探究并解決下列問題:
如圖3,在正方形ABCD內有一點P,且PA=,BP=2,PC=.求∠BPC度數的大小和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了進一步豐富學生的課外閱讀,欲增購一些課外書,為此對該校一部分學生進行了一次“你最喜歡的書籍”問卷調查(每人只選一項).根據收集到的數據,繪制成如下統(tǒng)計圖(不完整):
請根據圖中提供的信息,完成下列問題:
(1)在這次問卷調查中,一共抽查了 名學生;并在圖中補全條形統(tǒng)計圖;
(2)如果全校共有學生1600名,請估計該校最喜歡“科普”書籍的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于等腰三角形,有以下說法:
(1)有一個角為的等腰三角形一定是銳角三角形
(2)等腰三角形兩邊的中線一定相等
(3)兩個等腰三角形,若一腰以及該腰上的高對應相等,則這兩個等腰三角形全等
(4)等腰三角形兩底角的平分線的交點到三邊距離相等
其中,正確說法的個數為( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊中,厘米,厘米,如果點以厘米的速度運動.
(1)如果點在線段上由點向點運動.點在線段上由點向點運動,它們同時出發(fā),若點的運動速度與點的運動速度相等:
①經過“秒后,和是否全等?請說明理由.
②當兩點的運動時間為多少秒時,剛好是一個直角三角形?
(2)若點的運動速度與點的運動速度不相等,點從點出發(fā),點以原來的運動速度從點同時出發(fā),都順時針沿三邊運動,經過秒時點與點第一次相遇,則點的運動速度是__________厘米秒.(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).
(1)求拋物線的解析式;
(2)在圖甲中,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標;
(3)在圖乙中,點C和點C1關于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,矩形ABCD的頂點D在反比例函數(x<0)的圖象上,頂點B,C在x軸上,對角線AC的延長線交y軸于點E,連接BE,△BCE的面積是6,則k=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情景:如圖1,在同一平面內,點和點分別位于一塊直角三角板的兩條直角邊,上,點與點在直線的同側,若點在內部,試問,與的大小是否滿足某種確定的數量關系?
(1)特殊探究:若,則_________度,________度,_________度;
(2)類比探索:請猜想與的關系,并說明理由;
(3)類比延伸:改變點的位置,使點在外,其它條件都不變,判斷(2)中的結論是否仍然成立?若成立,請說明理由;若不成立,請直接寫出,與滿足的數量關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的長為 ;
(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當⊙M與y軸相切時,sin∠BOQ= ;
(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當點P到達點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設點P運動的時間為t(秒).求當以B、D、E為頂點的三角形是直角三角形時點E的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com