和點分別為拋物線上的兩點,則. (用“>”或“<”填空).

 

【答案】

>.

【解析】

試題分析:先根據(jù)拋物線的解析式得出拋物線的開口向上,拋物線的對稱軸x=1,再判斷出兩點P(-2,y1)、Q(-1,y2),在拋物線的同側(cè),由二次函數(shù)的性質(zhì)即可得出結(jié)論.

試題解析:∵拋物線中a=1>0,

∴此拋物線開口向上,對稱軸

∵-1<1,-2<1,

∴兩點P(-2,y1)、Q(-1,y2)均在對稱軸的右側(cè),

∵-2<-1,

∴y1>y2

考點: 二次函數(shù)圖象上點的坐標(biāo)特征.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•涼山州)如圖,拋物線y=ax2-2ax+c(a≠0)交x軸于A、B兩點,A點坐標(biāo)為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.
(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長春一模)如圖,點A、B分別為拋物線y=-
1
3
x2+bx+4、y=
1
6
x2-2x+c與y軸交點,兩條拋物線都經(jīng)過點C(6,0).點P、Q分別在拋物線y=-
1
3
x2+bx+4、y=
1
6
x2-2x+c上,點P在點Q的上方,PQ平行y軸.設(shè)點P的橫坐標(biāo)為m.
(1)求b和c的值.
(2)求以A、B、P、Q為頂點的四邊形是平行四邊形時m的值.
(3)當(dāng)m為何值時,線段PQ的長度取得最大值?并求出這個最大值.
(4)直接寫出線段PQ的長度隨m增大而減小的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1與y2都與x軸交于點O(0,0)和點A,y1的頂點是B(2,-1),y2的頂點是C(2,-3),P是y1上的一個動點,過P作y軸的平行線交y2于點Q,分別過P,Q作x軸的平行線,分別交y1,y2于點P′,Q′,連接P′Q′.
(1)四邊形PP′Q′Q 是
形.
(2)求y1與y2關(guān)于x的函數(shù)關(guān)系式.
(3)設(shè)P點的橫坐標(biāo)為t(t>2且t≠4),四邊形PP′Q′Q的周長為y,試求y與t的函數(shù)關(guān)系式.
(4)當(dāng)四邊形PP′Q′Q是正方形,請直接寫出P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(28):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=+bx+c經(jīng)過B點,且頂點在直線x=上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的前提下,若M點是CD所在直線下方該拋物線上的一個動點,過點M作MN平行于y軸交CD于點N.設(shè)點M的橫坐標(biāo)為t,MN的長度為l.求l與t之間的函數(shù)關(guān)系式,并求l取最大值時,點M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案