【題目】四邊形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分別為點(diǎn)E,F.
(1)求證:△ADE≌△CBF;
(2)若AC與BD相交于點(diǎn)O,求證:AO=CO.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)根據(jù)已知條件得到由垂直的定義得到根據(jù)全等三角形的判定定理即可得到結(jié)論;
(2)如圖,連接AC,與BD交于點(diǎn)O.根據(jù)全等三角形的性質(zhì)得到由平行線的判定得到AD∥BC,根據(jù)平行四邊形的性質(zhì)即可得到結(jié)論.
試題解析:證明:(1)∵AE⊥BD,CF⊥BD,
∴∠AED=∠BFC=90°.
∵BE=DF,即BF+EF=EF+DE,
∴BF=DE.在Rt△ADE和Rt△CBF中
∴Rt△ADE≌Rt△CBF.
(2)連接AC,與BD交于點(diǎn)O.
∵Rt△ADE≌Rt△CBF,
∴AE=CF,
∵AE⊥BD,CF⊥BD,
∴AE∥CF,
∴四邊形AFCE是平行四邊形,
∴AO=CO.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯誤的是( )
A.b2>4ac
B.ax2+bx+c≥﹣6
C.若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n
D.關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OA表示的方向是北偏東15°,射線OB表示的方向是北偏西40°.
(1)若∠AOC=∠AOB,則射線OC表示的方向是 ;
(2)若射線OD是射線OB的反向延長線,則射線OD表示的方向是 ;
(3)∠BOD可以看作是由OB繞點(diǎn)O逆時針方向旋轉(zhuǎn)至OD形成的角,作∠BOD的平分線OE;
(4)在(1),(2),(3)的條件下,求∠COE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有8筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),稱后的紀(jì)錄如下:
回答下列問題:
(1)這8筐白菜中最接近標(biāo)準(zhǔn)重量的這筐白菜重 ______ 千克;
(2)這8筐白菜中,最重的與最輕的相差______ 千克;
(3)這8筐白菜一共重多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個四邊形花壇ABCD,被兩條線段MN,EF分成四個部分,分別種上紅、黃、紫、白四種花卉,種植面積依次是S1,S2,S3,S4,若MN∥AB∥CD,EF∥DA∥CB,則有( )
A. S1=S4 B. S1+S4=S2+S3 C. S1S4=S2S3 D. 都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月的某天小欣在“A超市”買了“雀巢巧克力”和“趣多多小餅干”共10包,已知“雀巢巧克力”每包22元,“趣多多小餅干”每包2元,總共花費(fèi)了80元.
(1)請求出小欣在這次采購中,“雀巢巧克力”和“趣多多小餅干”各買了多少包?
(2)“五一”期間,小欣發(fā)現(xiàn),A、B兩超市以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在A超市累計購物超過50元后,超過50元的部分打九折;在B超市累計購物超過100元后,超過100元的部分打八折.
①請問“五一”期間,若小欣購物金額超過100元,去哪家超市購物更劃算?
②“五一”期間,小欣又到“B超市”購買了一些“雀巢巧克力”,請問她至少購買多少包時,平均每包價格不超過20元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過點(diǎn)D作⊙O的切線BC于點(diǎn)M,切點(diǎn)為N,則DM的長為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)【問題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
【探究展示】(1)證明:AM=AD+MC;
【拓展延伸】(2)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)中的結(jié)論是否成立?請作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x交于A(﹣1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com