如圖,已知矩形ABCD,AB=,BC=3,在BC上取兩點E、F(E在F左邊),以EF為邊作等邊三角形PEF,使頂點P在AD上,PE、PF分別交AC于點G、H.

小題1:求△PEF的邊長;
小題2:在不添加輔助線的情況下,從圖中找出一個除△PEF外的等腰三角形,并說明理由
小題3:若△PEF的邊EF在線段BC上移動.試猜想:PH與BE有何數(shù)量關系?并證明你猜想的結論.
 
小題1:過P作PQ⊥BC于Q(如圖1) 
矩形ABCD,∴∠B=90°,即AB⊥BC,
又AD∥BC,∴PQ=AB=
∵△PEF是等邊三角形,∴∠PFQ=60°
在Rt△PQF中,QF:PQ:PF=1::2
∴△PEF的邊長為2.       ……………………4分
小題2:△APH是等腰三角形。理由如下:
∵AD∥BC,∠PFQ=60°,∴∠FPD=60°
在Rt△ADC中,AD=,DC=3,∴由勾股定理得AC=2,
∴AD=AC,∴∠CAD=30°
∵AD∥BC,∠PFQ=60°,∴∠FPD=60°,
∴∠PHA=30°=∠CAD,∴△APH是等腰三角形.   ……4分
小題3:PH-BE=1,理由如下:
作ER⊥AD于R(如圖2)
Rt△PER中,∠RPE=60°,∴PR=PE=1,∴PH-BE= PA-BE=PR=1。    …………2分
 略
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

寬與長的比是的矩形叫黃金矩形.心理測試表明:黃金矩形令人賞心悅目,它給我們以協(xié)調,勻稱的美感.現(xiàn)將小明同學在數(shù)學活動課中,折疊黃金矩形的方法歸納如下(如圖所示):
第一步:作一個正方形;
第二步:分別取,的中點,連接
第三步:以為圓心,長為半徑畫弧,交的延長線于;
第四步:過,交的延長線于。
請你根據以上作法,證明矩形為黃金矩形。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

□ABCD中,∠A=120°,則∠D       度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(8分)如圖,EFABCD對角線上的兩點,且.

求證:(1);
(2).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形的兩條對角線相交于點,,則矩形的對角線的長是(   )
A.2B.4C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(10分)如圖所示,在△ABC中,ADBC邊上的中線,點EAD的中點,過點ABC的平行線交CE的延長線于點F,連接BF

小題1:(1)求證:AFBD;
小題2:(2)如果ABAC,試證明:四邊形AFBD為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在ABCD中,BC=7厘米,CD=5厘米,∠D=50°,
BE平分∠ABC,下列結論中錯誤的是(    )
A.∠C="130°" B.∠BED=130°
C.AE=5厘米D.ED=2厘米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知直線AB交坐標軸于A(10,0)、B(0,5)兩點,
(1)直線AB的解析式為       ;
(2)在直線AB上有一動點M,在坐標系內有另一點N,若以點OB、M、N為頂點構成
的四邊形為菱形,則點N的坐標為       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,AD∥BC,BC=DC,CF平
分∠BCD,DF∥AB,BF的延長線交DC于點E.
小題1:求證△BFC≌△DFC;
小題2:AD=DE.

查看答案和解析>>

同步練習冊答案