【題目】本著“寧可備而不用,不可用而無備”的理念,126日鄭州市委市政府決定僅用10天時間建設(shè)成鄭州版“小湯山醫(yī)院”,一大批“通行者”從四面八方緊集馳援,170余臺機械晝夜不停地忙碌在抗疫一線,如圖1所示是建筑師傅正在對長方體型集裝箱房進行起吊任務(wù),如圖2所示,建筑師傅通過操縱機械臂(圖中的OA)來完成起吊,在起吊過程中始終保持集裝箱與地平面平行,起吊前工人師傅測得∠PDE45°,∠PED60°,OA20米,DE6米,EH3米,O到地面的距離OQ2米,AP4米,APOQ,當(dāng)?shù)醣?/span>OA和水平方向的夾角為53度時,求集裝箱底部距離地面的高度.(注:從起吊前到起吊結(jié)束始終保持∠PDE,∠PED的度數(shù)不變)

(結(jié)果精確到1m,參考數(shù)據(jù)≈1.41≈1.73,tan53°≈,sin53°≈,cos53°≈

【答案】7

【解析】

延長APDEQ,交FHN,交地平面于S,則ASDE,設(shè)PQx,根據(jù)三角函數(shù)的定義得到DQPQxEQx,求得AN4+4+311,過OOMASM,則SMOQ2,解直角三角形即可得到結(jié)論.

解:延長APDEQ,交FHN,交地平面于S,

ASDE

∴∠PQD=∠PQE90°,

設(shè)PQx

∵∠PDQ45°,∠PEQ60°,

DQPQx,EQx

x+x6,

x≈4,

PQ3.8

AN4+4+311,

OOMASM,

SMOQ2

∵∠AOM53°,OA20

AMOAsin53°20×16,

MNAMAN5,

NS5+27

答:集裝箱底部距離地面的高度為7米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+mx的圖象如圖,對稱軸為直線x=2,若關(guān)于x的一元二次方程﹣x2+mxt=0t為實數(shù))在1x5的范圍內(nèi)有解,則t的取值范圍是(

A.t>﹣5B.5t3C.3t≤4D.5t≤4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于,兩點.

1)求一次函數(shù)的解析式;

2)根據(jù)圖象直接寫出x的取值范圍;

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為貫徹落實《中華人民共和國河道管理條例》,對轄區(qū)內(nèi)河道阻水障礙物進行清理.甲、乙兩個工程隊共同承包此項清理工程,甲隊單獨施工完成此項工程比乙隊單獨施工完成此項工程多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.

1)甲、乙兩隊單獨完成此項工程各需多少天?

2)若由甲隊先施工天,再由甲、乙兩隊共同施工天,正好完成該工程,請直接寫出之間的函數(shù)關(guān)系式;

3)在(2)的條件下,若每天需支付甲隊費用1000元,每天需支付乙隊費用2000元,且完成工作總天數(shù)不超過24天,則如何安排甲隊先施工天數(shù),使總施工費用最少,并求出最少費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃購進甲,乙兩種文具一批,已知一件甲種文具進價與一件乙種文具進價的和為元,用元購進甲種文具的件數(shù)與元購進乙種文具的件數(shù)相同.

1)求甲乙兩種文具每件進價分別是多少元;

2)恰逢年中大促銷,超市計劃用不超過元資金購進甲乙兩種文具共件,已知賣出一件甲的利潤為元,一件乙的利潤為元.則超市如何進貨才能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形的各邊上順次截取,若四邊形面積是10,則正方形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191217日,我國第一艘國產(chǎn)航母“山東艦”在海南三亞交付海軍.在民族復(fù)興的路上我們偉大的祖國又前進了一大步!如圖,“山東艦”在一次試水測試中,由東向西航行到達處時,測得小島位于距離航母30海里的北偏東37°方向.“山東艦”再向西勻速航行1.5小時后到達處,此時測得小島位于航母的北偏東70°方向.

1_______°;

2)求航母的速度.(參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①拋物線yax2+bx+4a≠0)與x軸,y軸分別交于點A(﹣1,0),B4,0),點C三點.

1)試求拋物線的解析式;

2)點D3,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標(biāo);如果不存在,請說明理由;

3)點N在拋物線的對稱軸上,點M在拋物線上,當(dāng)以MN、B、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的邊BC上有一動點E,連接AEDE,以AE、DE為邊作AEDF.在點E從點B移動到點C的過程中,AEDF的面積(

A.先變大后變小B.先變小后變大C.一直變大D.保持不變

查看答案和解析>>

同步練習(xí)冊答案