【題目】計(jì)算:
(1) (5+-6 ) ×
(2)
(3)已知,求代數(shù)式的值;
(4)解方程組
(5)解方程組
【答案】(1)12;(2)2 ;(3)2075;(4);(5)
【解析】
(1)先將括號(hào)內(nèi)的各項(xiàng)化為最簡(jiǎn)二次根式,再運(yùn)用乘二次根式的乘法進(jìn)行計(jì)算即可;
(2)原式第一項(xiàng)運(yùn)用完全平方公式計(jì)算,第二項(xiàng)運(yùn)用二次根式的除法法則計(jì)算,第三項(xiàng)運(yùn)用絕對(duì)值的代數(shù)意義進(jìn)行化簡(jiǎn)。第四項(xiàng)運(yùn)用零指數(shù)冪法則進(jìn)行計(jì)算,合并即可得到結(jié)果;
(3)把直接代入求值即可;
(4)①×4-②×3求出x的值,再把x的值代入①中求出y的值即可;
(5)先把①分別代入②和③,消去z,得到關(guān)于x,y的二元一次方程組,解出x,y的值,代入①中,求出z的值即可.
(1) (5+-6 ) ×
=
=
=12;
(2)
=
=2;
(3)∵,
=
=121-72+9-2+2019
=2075;
(4),
①×4-②×3得,-x=-3,
解得,x=3,
把x=3代入①得,6+3y=12,
解得y=2,
所以方程級(jí)的解為:;
(5)
把①分別代入②和③,得,
解得, ④
把④代入①得,z=5,
所以,方程組的解為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如下的表格,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( )
實(shí)驗(yàn)次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 2000 |
頻率 | 0.365 | 0.328 | 0.330 | 0.334 | 0.336 | 0.332 | 0.333 |
A.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
B.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
C.拋一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是5
D.拋一枚硬幣,出現(xiàn)反面的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A和點(diǎn)B分別在y軸正半軸和x軸負(fù)半軸上,且OA=OB,點(diǎn)C和點(diǎn)D分別在第四象限和第一象限,且OC⊥OD,OC=OD,點(diǎn)D的坐標(biāo)為(m,n),且滿足+|n﹣2|=0.
(1)求點(diǎn)D的坐標(biāo);(2)求∠AKO的度數(shù);(3)如圖2,點(diǎn)P,Q分別在y軸正半軸和x軸負(fù)半軸上,且OP=OQ,直線ON⊥BP交AB于點(diǎn)N,MN⊥AQ交BP的延長(zhǎng)線于點(diǎn)M,判斷ON,MN,BM的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,湛河兩岸AB與EF平行,小亮同學(xué)假期在湛河邊A點(diǎn)處,測(cè)得對(duì)岸河邊C處視線與湛河岸的夾角∠CAB=37°,沿河岸前行140米到點(diǎn)B處,測(cè)得對(duì)岸C處的視線與湛河岸夾角∠CBA=45°.問湛河的寬度約多少米?(參考數(shù)據(jù):sin37°≈0.60,cos37°=0.80,tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備銷售甲、乙兩種商品共 80 件,已知 2 件甲種商品 與 3 件乙種商品的銷售利潤(rùn)相同,3 件甲種商品比 2 件乙商品的銷售利潤(rùn)多 150 元。
(1)每件甲種商品與每件乙種商品的銷售利潤(rùn)各多少元?
(2)若甲、乙兩種商品的銷售總利潤(rùn)不低于 6600 元,則至少銷售甲種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接OD.
(1)過點(diǎn)C作射線CF交BA的延長(zhǎng)線于點(diǎn)F,且使得∠ECF=∠AOD;(要求尺規(guī)作圖,不寫作法)
(2)求證:CF是⊙O的切線;
(3)若OE:AE=1:2,且AF=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_______°;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中∠BAC=120°,AB=AC,點(diǎn)M、N在邊BC上,且∠MAN=60°若BM=2,CN=3,則MN的長(zhǎng)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com