【題目】如圖,∠MAN90°,點(diǎn)C在邊AM上,AC2,點(diǎn)B為邊AN上一動(dòng)點(diǎn),連接BC,△ABC與△ABC關(guān)于BC所在的直線對(duì)稱,點(diǎn)D,E分別為ABBC的中點(diǎn),連接DE并延長(zhǎng)交AC所在直線于點(diǎn)F,連接AE,當(dāng)△AEF為直角三角形時(shí),AB的長(zhǎng)為_____

【答案】2

【解析】

當(dāng)△AEF為直角三角形時(shí),存在兩種情況:當(dāng)∠A'EF90°時(shí),如圖1,根據(jù)對(duì)稱的性質(zhì)和平行線可得:A'CA'E2,根據(jù)直角三角形斜邊中線的性質(zhì)得:BC2A'B4,最后利用勾股定理可得AB的長(zhǎng);當(dāng)∠A'FE90°時(shí),如圖2,證明△ABC是等腰直角三角形,可得ABAC2

解:當(dāng)△AEF為直角三角形時(shí),存在兩種情況:

當(dāng)∠A'EF90°時(shí),如圖1

∵△ABC與△ABC關(guān)于BC所在直線對(duì)稱,

A'CAC2,∠ACB=∠A'CB,

∵點(diǎn)D,E分別為ABBC的中點(diǎn),

D、E是△ABC的中位線,

DEAB,

∴∠BDE=∠MAN90°,

∴∠BDE=∠A'EF,

ABA'E

∴∠ABC=∠A'EB,

∴∠A'BC=∠A'EB,

A'BA'E,

RtA'CB中,∵E是斜邊BC的中點(diǎn),

BC2A'E,

由勾股定理得:AB2BC2AC2,

AE′=,

AB

當(dāng)∠A'FE90°時(shí),如圖2,

∵∠ADF=∠A=∠DFC90°,

∴∠ACF90°,

∵△ABC與△ABC關(guān)于BC所在直線對(duì)稱,

∴∠ABC=∠CBA'45°,

∴△ABC是等腰直角三角形,

ABAC2;

綜上所述,AB的長(zhǎng)為2;

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】紅燈籠,象征著闔家團(tuán)圓,紅紅火火,掛燈籠成為我國(guó)的一種傳統(tǒng)文化.小明在春節(jié)前購(gòu)進(jìn)甲、乙兩種紅燈籠,用3120元購(gòu)進(jìn)甲燈籠與用4200元購(gòu)進(jìn)乙燈籠的數(shù)量相同,已知乙燈籠每對(duì)進(jìn)價(jià)比甲燈籠每對(duì)進(jìn)價(jià)多9元.

1)求甲、乙兩種燈籠每對(duì)的進(jìn)價(jià);

2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),乙燈籠每對(duì)售價(jià)50元時(shí),每天可售出98對(duì),售價(jià)每提高1元,則每天少售出2對(duì):物價(jià)部門(mén)規(guī)定其銷售單價(jià)不高于每對(duì)65元,設(shè)乙燈籠每對(duì)漲價(jià)x元,小明一天通過(guò)乙燈籠獲得利潤(rùn)y元.

求出yx之間的函數(shù)解析式;

乙種燈籠的銷售單價(jià)為多少元時(shí),一天獲得利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)CAB延長(zhǎng)線上的點(diǎn),CD與⊙O相切于點(diǎn)D,連結(jié)BD、AD

1)求證:∠BDC=∠A;

2)若∠C45°,⊙O的半徑為1,求圖中陰影部分的面積(結(jié)果保留根號(hào)和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在雙曲線y 上,點(diǎn)B在雙曲線yk0)上,ABx軸,交y軸于點(diǎn)C,若AB2AC,則k的值為( 。

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)圖書(shū)室計(jì)劃購(gòu)買(mǎi)了甲、乙兩種故事書(shū).若購(gòu)買(mǎi)7本甲種故事書(shū)和4本乙種故事書(shū)需510元;購(gòu)買(mǎi)3本甲種故事書(shū)和5本乙種故事書(shū)需350元.

1)求甲種故事書(shū)和乙種故事書(shū)的單價(jià);

2)學(xué)校準(zhǔn)備購(gòu)買(mǎi)甲、乙兩種故事書(shū)共200本,且甲種故事書(shū)的數(shù)量不少于乙種故事書(shū)的數(shù)量的,請(qǐng)?jiān)O(shè)計(jì)出最省錢(qián)的購(gòu)買(mǎi)方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yx2+bx+cx軸相交于點(diǎn)A1,0)和點(diǎn)B,與y軸交于點(diǎn)C0,﹣3)頂點(diǎn)為D

1)求拋物線的函數(shù)關(guān)系式;

2)判斷△BCD的形狀,并說(shuō)明理由;

3)點(diǎn)P在拋物線上,點(diǎn)Q在直線yx上,是否存在點(diǎn)PQ使以點(diǎn)P、Q、C、O為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某漁船向正東方向航行,上午8點(diǎn)在A處時(shí)發(fā)現(xiàn)漁船、小島B和小島C在同一條直線上,漁船以30海里/小時(shí)的速度繼續(xù)向正東方向航行,上午10點(diǎn)到達(dá)位于小島C的正南方向上的D處,此時(shí)小島B在漁船的西偏北63°的方向上,如圖,已知小島C在小島B的東偏北45°的方向上,求小島B和小島C之間的距離.(結(jié)果精確到1海里,參考數(shù)據(jù):sin63°≈0.9cos63°≈0.5,tan63°≈2.0,≈1.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC內(nèi)接于⊙OCDAB于點(diǎn)D

1)如圖1,連接OBOC,ABAC,求證:∠BOC4BCD;

2)如圖2,延長(zhǎng)CD交⊙O于點(diǎn)E,連接AE,過(guò)點(diǎn)OOFAE,垂足為F,求證:BC2OF;

3)如圖3,在(1)的條件下,GAB上一點(diǎn),連接CG,HCG的中點(diǎn),連接BH,若∠BAC=∠HBAAG8,BH9,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案