【題目】下列命題正確的個數(shù)是( )

①等腰三角形的腰長大于底邊長;

②三條線段、,如果,那么這三條線段一定可以組成三角形;

③等腰三角形是軸對稱圖形,它的對稱軸是底邊上的高;

④面積相等的兩個三角形全等.

A. 0個 B. 1個 C. 2個 D. 3個

【答案】A

【解析】試題分析:根據(jù)三角形三邊關(guān)系以及軸對稱圖形的性質(zhì)和全等三角形的性質(zhì)分別判斷得出即可.

解:等腰三角形腰長不一定大于底邊,所以選項①不正確;

三條線段a、b、c,如果a+b>c,則這三條線段不一定可以組成三角形,c必須大于兩邊之差,所以選項②不正確;

等腰三角形是軸對稱圖形,它的對稱軸是底邊上的高所在直線,所以選項③錯誤;

面積相等的兩三角形不一定全等,所以選項④錯誤.

故正確的有0.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分別是E,F.求證:CE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面內(nèi),直線a,b相交于P,若a∥c,則b與c的位置關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a,b,c為常數(shù)a≠0)與x軸,y軸分別交于A,B,C三點,已知A(-1,0),B(3,0),C(0,3),動點E從拋物線的頂點點D出發(fā)沿線段DB向終點B運動.
(1)直接寫出拋物線解析式和頂點D的坐標(biāo);
(2)過點E作EF⊥y軸于點F,交拋物線對稱軸左側(cè)的部分于點G,交直線BC于點H,過點H作HP⊥x軸于點P,連接PF,求當(dāng)線段PF最短時G點的坐標(biāo);
(3)在點E運動的同時,另一個動點Q從點B出發(fā)沿直線x=3向上運動,點E的速度為每秒個單位長度,點Q速度均為每秒1個單位長度,當(dāng)點E到達終點B時點Q也隨之停止運動,設(shè)點E的運動時間為t秒,試問存在幾個t值能使△BEQ為等腰三角形?并直接寫出相應(yīng)t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是某手機店1~4月份的統(tǒng)計圖,分析統(tǒng)計圖,對3、4月份三星手機的銷售情況四個同學(xué)得出的以下四個結(jié)論,其中正確的為(   )

A. 4月份三星手機銷售額為65萬元

B. 4月份三星手機銷售額比3月份有所上升

C. 4月份三星手機銷售額比3月份有所下降

D. 3月份與4月份的三星手機銷售額無法比較,只能比較該店銷售總額

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角梯形的一個內(nèi)角為,較長的腰為6,一底為5,則這個梯形的面積為( )

A. B. C. 25 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工程上常用鋼珠來測量零件上小孔的直徑.假設(shè)鋼珠的直徑是12毫米,測得鋼珠頂端離零件表面的距離為9毫米,如圖所示,則這個小孔的直徑AB_________毫米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“垂直于同一直線的兩條直線互相平行”的題設(shè) , 結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,將△ABC折疊,使點B恰好落在邊AC上,與點B′重合,AE為折痕,則EB′=

查看答案和解析>>

同步練習(xí)冊答案