(2012•濰坊)如圖所示,AB=DB,∠ABD=∠CBE,請你添加一個適當(dāng)?shù)臈l件
∠BDE=∠BAC
∠BDE=∠BAC
,使△ABC≌△DBE.(只需添加一個即可)
分析:根據(jù)∠ABD=∠CBE可以證明得到∠ABC=∠DBE,然后根據(jù)利用的證明方法,“角邊角”“邊角邊”“角角邊”分別寫出第三個條件即可.
解答:解:∵∠ABD=∠CBE,
∴∠ABD+∠ABE=∠CBE+∠ABE,
即∠ABC=∠DBE,
∵AB=DB,
∴①用“角邊角”,需添加∠BDE=∠BAC,
②用“邊角邊”,需添加BE=BC,
③用“角角邊”,需添加∠ACB=∠DEB.
故答案為:∠BDE=∠BAC或BE=BC或∠ACB=∠DEB.(寫出一個即可)
點評:本題考查了全等三角形的判定,根據(jù)已知條件有一邊與一角,根據(jù)不同的證明方法可以選擇添加不同的條件,需要注意,不能使添加的條件符合“邊邊角”,這也是本題容易出的地方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濰坊)如圖空心圓柱體的主視圖的畫法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濰坊)如圖是某月的日歷表,在此日歷表上可以用一個矩形圈出3×3個位置相鄰的9個數(shù)(如6,7,8,13,14,15,20,21,22).若圈出的9個數(shù)中,最大數(shù)與最小數(shù)的積為192,則這9個數(shù)的和為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濰坊)如圖,已知平行四邊形ABCD,過A點作AM⊥BC于M,交BD于E,過C點作CN⊥AD于N,交BD于F,連接AF、CE.
(1)求證:四邊形AECF為平行四邊形;
(2)當(dāng)AECF為菱形,M點為BC的中點時,求AB:AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濰坊)如圖,已知拋物線與坐標(biāo)軸分別交于A(-2,0),B(2,0),C(0,-1)三點,過坐標(biāo)原點O的直線y=kx與拋物線交于M、N兩點.分別過點C、D(0,-2)作平行于x軸的直線l1、l2
(1)求拋物線對應(yīng)二次函數(shù)的解析式;
(2)求證以O(shè)N為直徑的圓與直線l1相切;
(3)求線段MN的長(用k表示),并證明M、N兩點到直線l2的距離之和等于線
段MN的長.

查看答案和解析>>

同步練習(xí)冊答案