【題目】如圖,已知BD平分∠ABC. 請補全圖形后,依條件完成解答.

(1)在直線BC下方畫∠CBE,使∠CBE與∠ABC互補;

(2)在射線BE上任取一點F,過點F畫直線FGBDBC于點G;

(3)判斷∠BFG與∠BGF的數(shù)量關系,并說明理由.

【答案】(1)畫圖見解析;(2)畫圖見解析;(3)BFG=BGF,理由見解析.

【解析】

(1)如下圖,延長AB至點E即可;

(2)如下圖,按照題意在射線BE上任取一點F,再過點FFG∥BDBC于點G即可;

(3)根據(jù)“角平分線的定義和平行線的性質(zhì)”結(jié)合“已知條件”進行分析解答即可.

(1)如下圖圖中∠CBE為所求角

(2)如上圖圖中線段FG為所求線段

(3)∠BFG=∠BGF,理由如下

BDFG,

∴∠1=3,2=4,

BD平分∠ABC,

∴∠3=4

∴∠1=2,即∠BFG=BGF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD∥BC,AF平分∠BAD交BC于點F,BE平分∠ABC交AD于點E.求證:

(1)△ABF是等腰三角形;
(2)四邊形ABFE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點A(﹣1,0)、B(3,0)、點C三點.

(1)試求拋物線的解析式;
(2)點D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;
(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個單位長度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過程中,△B′O′C′與△BCD重疊的面積記為S,設平移的時間為t秒,試求S與t之間的函數(shù)關系式?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,ECD邊上一點,

(1)將ADE繞點A按順時針方向旋轉(zhuǎn),使AD、AB重合,得到ABF,如圖1所示.觀察可知:與DE相等的線段是   AFB=   

(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點,且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ;

(3)在(2)題中,連接BD分別交AP、AQM、N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長交AD于E,交BA的延長線于點F.

(1)求證:△APD≌△CPD;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2﹣2x+1.
(1)求它的對稱軸和頂點坐標;
(2)根據(jù)圖象,確定當x>2時,y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】麒麟?yún)^(qū)第七中學現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計劃在空地上種草皮,經(jīng)測量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m

1)求出空地ABCD的面積?

2)若每種植1平方米草皮需要300元,問總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點、數(shù)b的點與原點的距離相等.

(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

(2)|b-1|+|a-1|=________;

(3)化簡:|a+b|+|a-c|-|b|+|b-c|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,取點D與點E,使得AD=AE,BAE=CAD,連結(jié)BD與CE交于點O.求證:

(1)ABD≌△ACE

(2)OB=OC.

查看答案和解析>>

同步練習冊答案