【題目】二次函數(shù))的圖象如圖所示,對稱軸為,給出下列結(jié)論:①; ②當(dāng)時,;③;④,其中正確的結(jié)論有(

A.①②B.①③C.①③④D.②④

【答案】C

【解析】

根據(jù)二次函數(shù)圖象的開口向上,可得a0,根據(jù)圖象與y軸的交點在y軸的負半軸上,可得c0,根據(jù)圖象的對稱軸是直線x=1,結(jié)合a0可得b0,進而可得①正確;再根據(jù)當(dāng)x2時,y有小于0的情況,可判斷②錯誤;因為x=1時,y0,∴0,再結(jié)合對稱軸可得2a+b=0,進一步可得,由此判斷③正確;最后由2a+b=0,a0,可得,所以④正確;到此可得結(jié)果.

∵二次函數(shù)的圖象開口向上,∴a0,

∵二次函數(shù)的圖象與y軸的交點在y軸的負半軸上,∴c0,

∵二次函數(shù)圖象的對稱軸是直線x=1

,∴2a+b=0b0.

;故①正確;

由二次函數(shù)的圖象可知,拋物線與x軸的右交點的橫坐標(biāo)應(yīng)大于2小于3,

∴當(dāng)x2時,y有小于0的情況,故②錯誤;

∵當(dāng)x=1時,y0

0,

代入得:,故③正確;

前面已得2a+b=0,又∵a0,∴,故④正確;

故答案為:①③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為格點三角形,圖中的就是格點三角形.在建立平面直角坐標(biāo)系后,點的坐標(biāo)為.

1)把向左平移8格后得到,在坐標(biāo)系方格紙中畫出的圖形并直接寫出點的坐標(biāo)為____;

2)把繞點按順時針方向旋轉(zhuǎn)后得到,在坐標(biāo)系方格紙中畫出的圖形并直接寫出點的坐標(biāo)為____________

3在現(xiàn)有坐標(biāo)系的方格紙中以點為位似中心放大,使放大前后對應(yīng)邊長的比為,畫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將繞點順時針旋轉(zhuǎn)得到,使點的對應(yīng)點恰好落在邊上,點的對應(yīng)點為,連接.下列結(jié)論一定正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】豆豆同學(xué)上周末對萬州西山鐘樓(AB)的高度進行了測量.如圖,他站在點 D 處測得西山鐘樓頂部點 A 的仰角為 67°.然后他從點 D 沿著坡度為 i=1:的斜坡 DF 方向走 20 米到達點 F,此時測得建筑物頂部點 A 的仰角為 45°.已知該同學(xué)的視線距地面高度為 1.6 米(即 CDEF1.6 米),圖 中所有的點均在同一平面內(nèi),點 B、D、G 在同一條直線上,點 E、F、G 在同一條直線上,AB、CDEF 均垂直于 BG.則西山鐘樓 AB 的高約為( )(參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan67°≈2.36

A.17.4 B.36.8 C.48.8 D.50.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】參照學(xué)習(xí)反比例函數(shù)的過程與方法,探究函數(shù) y1x≠0)的圖象與性質(zhì),因為 y11,即 y1=﹣+1,所以我們對比函數(shù) y=﹣來探究畫出函數(shù) y1x≠0 的圖象,經(jīng)歷分析解析式、列表、描點、連線過程得到兩個函數(shù)的圖像如圖所示.

1)觀察:由 y1圖象可知:

①當(dāng) x0 時,y x的增大而 (填增大減小

y1 的圖象可以由 y=﹣的圖象向 平移 個單位長度得到.

y1 的取值范圍是

2)探究:①若直線 l 對應(yīng)的函數(shù)關(guān)系式為 y2kx+b,且經(jīng)過點(﹣1,3)和點(1,﹣1),請再給出的平面直角坐標(biāo)系中畫出 y2,若 y1y2,則 x 的取值范圍為

Am1,n1),Bm2n2)在函數(shù) y圖象上,且 n1+n22,求 m1+m2 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-x+3x軸、y軸分別交于A,B兩點,拋物線y=-x2+bx+c經(jīng)過B點,且與x軸交于CD兩點(點C在左側(cè)),且C(-30)

1)求拋物線的解析式;

2)平移直線AB,使得平移后的直線與拋物線分別交于點D,E,與y軸交于點F,連接CE,CF,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解班級學(xué)生數(shù)學(xué)課前預(yù)習(xí)的具體情況,鄭老師對本班部分學(xué)生進行了為期一個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達標(biāo),并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

1C類女生有   名,D類男生有   名,將上面條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中課前預(yù)習(xí)不達標(biāo)對應(yīng)的圓心角度數(shù)是   ;

3)為了共同進步,鄭老師想從被調(diào)查的A類和D類學(xué)生中各隨機機抽取一位同學(xué)進行一幫一互助學(xué)習(xí),請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、BC、CD分別與⊙O切于EF、G,且ABCD.連接OB、OC,延長CO交⊙O于點M,過點MMNOBCDN

1)求證:MN是⊙O的切線;

2)當(dāng)OB6cm,OC8cm時,求⊙O的半徑及MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)節(jié)能環(huán)保,降低能源消耗,提倡環(huán)保型新能源開發(fā),造福社會.某公司研發(fā)生產(chǎn)一種新型智能環(huán)保節(jié)能燈,成本為每件40元.市場調(diào)查發(fā)現(xiàn),該智能環(huán)保節(jié)能燈每件售價y(元)與每天的銷售量為x(件)的關(guān)系如圖,為推廣新產(chǎn)品,公司要求每天的銷售量不少于1000件,每件利潤不低于5元.

1)求每件銷售單價y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;

2)設(shè)該公司日銷售利潤為P元,求每天的最大銷售利潤是多少元?

3)在試銷售過程中,受國家政策扶持,毎銷售一件該智能環(huán)保節(jié)能燈國家給予公司補貼mm≤40)元.在獲得國家每件m元補貼后,公司的日銷售利潤隨日銷售量的增大而增大,則m的取值范圍是   (直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案