【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于 .
【答案】40
【解析】解:過點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示. 設(shè)OA=a,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB= ,
∴AM=OAsin∠AOB= a,OM= = a,
∴點(diǎn)A的坐標(biāo)為( a, a).
∵點(diǎn)A在反比例函數(shù)y= 的圖象上,
∴ a× a= a2=48,
解得:a=10,或a=﹣10(舍去).
∴AM=8,OM=6,OB=OA=10.
∵四邊形OACB是菱形,點(diǎn)F在邊BC上,
∴S△AOF= S菱形OBCA= OBAM=40.
故答案是:40.
過點(diǎn)A作AM⊥x軸于點(diǎn)M,設(shè)OA=a,通過解直角三角形找出點(diǎn)A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點(diǎn)F在邊BC上,即可得出S△AOF= S菱形OBCA , 結(jié)合菱形的面積公式即可得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過點(diǎn)C,且對稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)填空:點(diǎn)A坐標(biāo)為;拋物線的解析式為 .
(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?
(3)在圖②中,若點(diǎn)P在對稱軸上從點(diǎn)A開始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“雙十二”期間,A,B兩個(gè)超市開展促銷活動(dòng),活動(dòng)方式如下:
A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;
B超市:購物金額打8折.
某學(xué)校計(jì)劃購買某品牌的籃球做獎(jiǎng)品,該品牌的籃球在A,B兩個(gè)超市的標(biāo)價(jià)相同.根據(jù)商場的活動(dòng)方式:
(1)若一次性付款4200元購買這種籃球,則在B商場購買的數(shù)量比在A商場購買的數(shù)量多5個(gè).請求出這種籃球的標(biāo)價(jià);
(2)學(xué)校計(jì)劃購買100個(gè)籃球,請你設(shè)計(jì)一個(gè)購買方案,使所需的費(fèi)用最少.(直接寫出方案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx﹣2(k>0)與雙曲線 在第一象限內(nèi)的交點(diǎn)R,與x軸、y軸的交點(diǎn)分別為P、Q.過R作RM⊥x軸,M為垂足,若△OPQ與△PRM的面積相等,則k的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx﹣2(k>0)與雙曲線 在第一象限內(nèi)的交點(diǎn)R,與x軸、y軸的交點(diǎn)分別為P、Q.過R作RM⊥x軸,M為垂足,若△OPQ與△PRM的面積相等,則k的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知長方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點(diǎn)E,將△ADE折疊使點(diǎn)D恰好落在BC邊上的點(diǎn)F,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,BD為AC邊上的中線,過點(diǎn)C作于點(diǎn)E,過點(diǎn)A作BD的平行線,交CE的延長線于點(diǎn)F,在AF的延長線上截取,連接BG,DF.
求證:;
求證:四邊形BDFG為菱形;
若,,求四邊形BDFG的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,試求∠DFB和∠DGB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com