【題目】(本題8分) 甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分. 如圖,甲 在O點正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式 ,已知點O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度1.55m.
(1)當a= 時,①求h的值.②通過計算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點O的水平距離為7m,離地面的高度為 m的Q處時,乙扣球成功,求a的值.
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題
四川的災情牽動全國人民的心,某市A、B兩個蔬菜基地得知四川C、D兩個災民安置點分別急蔬菜240噸和260噸的消息后,決定調(diào)運蔬菜支援災區(qū)。已知A蔬菜基地有蔬菜200噸,B蔬菜基地有蔬菜300噸,現(xiàn)將這些蔬菜全部調(diào)往C、D兩個災民安置點。從A地運往C、D兩處的費用分別為每噸20元和25元,從B地運往C、D兩處的費用分別為每噸15元和18元。設從B地運往C處的蔬菜為噸。
(1)請?zhí)顚懴卤恚⑶髢蓚蔬菜基地調(diào)運蔬菜的運費相等時的值?
C | D | 總計 | |
A | 200噸 | ||
B | 噸 | 300噸 | |
總計 | 240噸 | 260噸 | 500噸 |
(2)已知總運費最小的調(diào)運費用是9280元,請你提交具體的調(diào)運方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了 淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng) 天的總成本為 萬元;放養(yǎng) 天的總成本為 萬元(總成本=放養(yǎng)總費用+收購成本).
(1)設每天的放養(yǎng)費用是 萬元,收購成本為 萬元,求 和 的值;
(2)設這批淡水魚放養(yǎng) 天后的質(zhì)量為 ( ),銷售單價為 元/ .根據(jù)以往經(jīng)驗可知: 與 的函數(shù)關系為 ; 與 的函數(shù)關系如圖所示.
①分別求出當 和 時, 與 的函數(shù)關系式;
②設將這批淡水魚放養(yǎng) 天后一次性出售所得利潤為 元,求當 為何值時, 最大?并求出最大值.(利潤=銷售總額-總成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖1,拋物線 與 軸交于A,B兩點,點P在拋物線上(點P與A,B兩點不重合),如果△ABP的三邊滿足 ,則稱點P為拋物線 的勾股點。
(1)直接寫出拋物線 的勾股點的坐標;
(2)如圖2,已知拋物線C: 與 軸交于A,B兩點,點P(1, )是拋物線C的勾股點,求拋物線C的函數(shù)表達式;
(3)在(2)的條件下,點Q在拋物線C上,求滿足條件 的點Q(異于點P)的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上三點M,O,N對應的數(shù)分別為-1,0,3,點P為數(shù)軸上任意一點,其對應的數(shù)為x.
(1)MN的長為 ;
(2)如果點P到點M、點N的距離相等,那么x的值是 ;
(3)數(shù)軸上是否存在點P,使點P到點M、點N的距離之和是8?若存在,直接寫出x的值;若不存在,請說明理由.
(4)如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設t分鐘時點P到點M、點N的距離相等,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線相交于點于點于點F,連結(jié),則下列結(jié)論:;;;圖中共有四對全等三角形其中正確結(jié)論的個數(shù)是
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖A、B分別為數(shù)軸上的兩點,A點對應的數(shù)為-10,B點對應的數(shù)為90.
(1)請寫出與A,B兩點距離相等的M點對應的數(shù);
(2)現(xiàn)在有一只電子螞蟻P從B點出發(fā)時,以3個單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以2個單位/秒的速度向右運動,設兩只電子螞蟻在數(shù)軸上的C點相遇,求C點對應的數(shù)是多少.
(3)若當電子螞蟻P從B點出發(fā)時,以3個單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以2個單位/秒的速度向右運動,求經(jīng)過多長的時間兩只電子螞蟻在數(shù)軸上相距35個單位長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E、F分別是□ABCD的邊BC、AD上的點,且BE=DF
(1)求證:四邊形AECF是平行四邊形;
(2)若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,E,F(xiàn)分別在AB,CD上,且BE=DF,EF與BD相交于點O,連結(jié)AO.若∠CBD=35°,則∠DAO的度數(shù)為( )
A. 35° B. 55° C. 65° D. 75°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com