【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2=0①有兩個不等的實數(shù)根.

k的取值范圍;

若方程的兩根的平方和為7,求k的值.

【答案】(1)k>﹣;(2)k=1.

【解析】

(1)由一元二次方程x2+(2k+1)x+k2=0①有兩個不等的實數(shù)根可知判別式Δ>0,解不等式即可.(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系求出兩根的和與兩根的積,利用完全平方公式即可列長方程進而可得答案.

1)∵關(guān)于x的一元二次方程x2+(2k+1)x+k2=0有兩個不等的實數(shù)根,

∴△=(2k+1)2﹣4k2=4k+1>0,

解得:k>﹣

(2)設(shè)方程x2+(2k+1)x+k2=0的兩實數(shù)根分別為x1,x2,則x1+x2=﹣2k﹣1,x1x2=k2

+=(x1+x22﹣2x1x2=7,即(﹣2k﹣1)2﹣2k2=7,

k2+2k﹣3=0,

解得:k1=﹣3,k2=1.

k>﹣,

k=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDAB,BEAC,垂足分別為點D,E,BE、CD相交于點O.1=2,則圖中全等三角形共有( )

A. 4B. 3C. 2D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:三角形紙片ABC中,∠C=90°,AB=12,BC=6B′是邊AC上一點.將三角形紙片折疊,使點B與點B′重合,折痕與BC、AB分別相交于EF.設(shè)BE=x,

1)若x=4,求B′C的長;

2)當AFB′是直角三角形時,求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們在學(xué)習(xí)實數(shù)時畫了這樣一個圖,即以數(shù)軸上的單位長為‘1’的線段作一個正方形,然后以原點O為圓心,正方形的對角線長為半徑畫弧交數(shù)軸于點A”,請根據(jù)圖形回答下列問題:

(1)線段OA的長度是多少?(要求寫出求解過程)

(2)這個圖形的目的是為了說明什么?

(3)這種研究和解決問題的方式體現(xiàn)了 的數(shù)學(xué)思想方法.(將下列符合的選項序號填在橫線上)

A.數(shù)形結(jié)合 B.代入 C.換元 D.歸納

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知拋物線y=﹣x2+2x+3與x軸交于AB兩點,點M在這條拋物線上,點Py軸上,如果四邊形ABMP是平行四邊形,則點M的坐標為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)

1)如圖,在正方形ABCD中,AEF的頂點E,F分別在BC,CD邊上,高AG與正方形的邊長相等,求的度數(shù).

2)如圖,在RtABD中,,,點M,NBD邊上的任意兩點,且,將ABM繞點A逆時針旋轉(zhuǎn)ADH位置,連接,試判斷MN,ND,DH之間的數(shù)量關(guān)系,并說明理由.

3)在圖中,連接BD分別交AE,AF于點M,N,若,,,求AG,MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A﹣1,0),B5,0),C0,)三點.

1)求拋物線的解析式;

2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;

3)點Mx軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A+C180°,E、F分別在BC、CD上,且ABBEADDF,MEF的中點,DM3,BM4,則五邊形ABEFD的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點O為圓心,AB長為直徑作圓,在O上取一點C,延長AB至點D,連接DC,過點AO的切線交DC的延長線于點E,且DCBDAC.

(1)求證:CDO的切線;

(2)AD6,tanDCB,求AE的長.

查看答案和解析>>

同步練習(xí)冊答案