【題目】如圖,為的外接圓,,作直線(xiàn),于.
(1)圖1,求證:是的切線(xiàn);
(2)圖2,交于點(diǎn),過(guò)點(diǎn)作,垂足為,交于點(diǎn).
①求證:;
②若,,求的長(zhǎng).
【答案】(1)證明見(jiàn)詳解;(2)①證明見(jiàn)詳解;②.
【解析】
(1)連接OA,OB,OC,由AC=AB,OA=OA,OC=OB可證出△OAC≌△OAB(SSS),利用全等三角形的性質(zhì)可得出∠OAC=∠OAB,即AO平分∠BAC,利用垂徑定理可得出AO⊥BC,結(jié)合AD//BC可得出AD⊥AO,由此即可證出AD是⊙O的切線(xiàn);
(2)①連接AE,由圓內(nèi)接四邊形對(duì)角互補(bǔ)結(jié)合∠BCE=90°可得出∠BAE=90°,由同角的余角相等可得出∠BAG=∠AEB,結(jié)合∠ABC=∠ACB=∠AEB可得出∠BAG=∠ABC,由平行線(xiàn)的性質(zhì)可得∠BAD+∠ABC=180°,即可得結(jié)論;
②由∠ADC=∠AFB=90°,∠ACD=∠ABF,AC=AB可證出△ADC≌△AFB(AAS),利用全等三角形的性質(zhì)可求出AF,BF的長(zhǎng),設(shè)FG=x,在Rt△BFG中,利用勾股定理可求出x的值,即可求解.
證明:(1)如圖1,連接OA,OB,OC.
在△OAC和△OAB中,
,
∴△OAC≌△OAB(SSS),
∴∠OAC=∠OAB,
∴AO平分∠BAC,
∴AO⊥BC.
又∵AD//BC,
∴AD⊥AO,
∴AD是⊙O的切線(xiàn).
(2)①證明:如圖2,連接AE.
∵AD//BC,AD⊥CD,
∴∠BCE=90°,
∴∠BAE=90°.
又∵AF⊥BE,
∴∠AFB=90°.
∵∠BAG+∠EAF=∠AEB+∠EAF=90°,
∴∠BAG=∠AEB.
∵∠ABC=∠ACB=∠AEB,
∴∠BAG=∠ABC,
∵AD//BC,
∴∠BAD+∠ABC=180°,
∴∠BAD+∠BAG=180°;
②在△ADC和△AFB中,
,
∴△ADC≌△AFB(AAS),
∴AF=AD=3,BF=CD=4,
∵∠BAG=∠ABC,
∴AG=BG
設(shè)FG=x,在Rt△BFG中,FG=x,BF=4,BG=AG=x+3,
∴FG2+BF2=BG2,即x2+42=(x+3)2,
∴x=,
∴FG=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如釁,在Rt△ABC中,∠ACB=90°,sin∠BAC=,點(diǎn)D在AB的延長(zhǎng)線(xiàn)上,BD=BC,AE平分∠BAC交CD于點(diǎn)E,若AE=5,則點(diǎn)A到直線(xiàn)CD的距離AH為________,BD的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線(xiàn)AC.BD交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AB交AB的延長(zhǎng)線(xiàn)于點(diǎn)E.連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=.OE=2,求線(xiàn)段CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫(xiě)有A,B,B.這些卡片除字母外完全相同,從中隨機(jī)摸出一張,記下字母后放回,充分洗勻后,再?gòu)闹忻鲆粡垼绻麅纱蚊娇ㄆ帜赶嗤瑒t小明勝,否則小亮勝,這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說(shuō)明現(xiàn)由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在雙曲線(xiàn)的第一圖像的那一支上,垂直于軸于點(diǎn),點(diǎn)在軸正半軸上,且,點(diǎn)在線(xiàn)段上,且,點(diǎn)為的中點(diǎn),若面積為3,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),為坐標(biāo)原點(diǎn),點(diǎn)在軸的正半軸上,四邊形是平行四邊形,,,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn),與交于點(diǎn).
(1)求點(diǎn)的坐標(biāo)和反比例函數(shù)解析式;
(2)若,求點(diǎn)的坐標(biāo);
(3)在(2)中的條件下,如圖(2),點(diǎn)為直線(xiàn)上的一個(gè)動(dòng)點(diǎn),點(diǎn)為雙曲線(xiàn)上的一個(gè)動(dòng)點(diǎn),是否在這樣的點(diǎn)、點(diǎn),使以、、、為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB邊上且DE⊥BE.
(1)判斷直線(xiàn)AC與△DBE外接圓的位置關(guān)系,并說(shuō)明理由;
(2)若AD=6,AE=6,求△DBE外接圓的半徑及CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=﹣x+4與x軸,y軸分別交于點(diǎn)B,C,點(diǎn)A在x軸負(fù)半軸上,且OA=OB,拋物線(xiàn)y=ax2+bx+4經(jīng)過(guò)A,B,C三點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P是第一象限內(nèi)拋物線(xiàn)上的動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m,過(guò)點(diǎn)P作PD⊥BC,垂足為D,用含m的代數(shù)式表示線(xiàn)段PD的長(zhǎng),并求出線(xiàn)段PD的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷(xiāo)階段發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件,銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件
(1)寫(xiě)出商場(chǎng)銷(xiāo)售這種文具,每天所得的銷(xiāo)售利潤(rùn)(元)與銷(xiāo)售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷(xiāo)售單價(jià)為多少元時(shí),該文具每天的銷(xiāo)售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷(xiāo)部結(jié)合上述情況,提出了A、B兩種營(yíng)銷(xiāo)方案
方案A:該文具的銷(xiāo)售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;
方案B:每天銷(xiāo)售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com