【題目】如圖,直線yx+3x軸交于點A,與y軸交于點B,點C與點A關于y軸對稱.

1)求直線BC的函數(shù)表達式;

2)設點Mx軸上的一個動點,過點My軸的平行線,交直線AB于點P,交直線BC于點Q,連接BM

①若∠MBC90°,求點P的坐標;

②若△PQB的面積為,請直接寫出點M的坐標.

【答案】1y=﹣x+3;(2)①P(﹣,0);②M,0)或(﹣,0).

【解析】

1)先根據坐標軸上點的特點求出A,B的坐標,進而求出點C坐標,最后用待定系數(shù)法即可得出結論;

2)①設出點M的坐標,利用勾股定理求出BC245BM2OM2+OB2m2+9,MC2=(6m2,最后用勾股定理建立方程求解,即可得出結論;

②設出點M的坐標,進而得出點P,Q坐標,即:得出PQ,最后用面積公式即可得出結論.

解:(1)對于yx+3,令x0,y3,

B0,3),

y0,

x+30

x=﹣6,

A(﹣6,0),

∵點C與點A關于y軸對稱,

C60),

設直線BC的解析式為ykx+b,

,

,

∴直線BC的解析式為y=﹣x+3

2)①設點Mm,0),

Pm, m+3),

B0,3),C6,0),

BC245,BM2OM2+OB2m2+9,MC2=(6m2,

∵∠MBC90°,

∴△BMC是直角三角形,

BM2+BC2MC2,

m2+9+45=(6m2,

m=﹣,∴P(﹣,0);

②設點Mn0),

∵點P在直線AByx+3上,

Pn, n+3),

∵點Q在直線BCy=﹣x+3上,

Qn,﹣ n+3),

PQ=|n+3﹣(﹣n+3)|=|n|,

∵△PQB的面積為,

SPQB|n||n|=n2,

n=±

M,0)或(﹣,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片中,,,折疊紙片使點落在邊上的處,折痕為.過點,連接.

1)求證:四邊形為菱形;

2)當點邊上移動時,折痕的端點,也隨之移動.

①當點與點重合時(如圖),求菱形的邊長;

②若限定,分別在邊上移動,求出點在邊上移動的最大距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售每臺進價分別為180元、150元的甲、乙兩種型號的電器,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

甲種型號

乙種型號

第一周

2

3

1100

第二周

4

5

2000

(進價、售價均保持不變,利潤=銷售收入-進貨成本)

1)求甲、乙兩種型號的電器的銷售單價;

2)若超市準備用不多于5000元的金額再采購這兩種型號的電器共30臺,求甲種型號的電器最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電器能否實現(xiàn)利潤超過1900元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象過點C(0,1),頂點為Q(2,3),點Dx軸正半軸上,線段OD=OC.

(1)求拋物線的解析式;

(2)拋物線上是否存在點M,使得⊿CDM是以CD為直角邊的直角三角形?若存在,請求出M點的坐標;若不存在,請說明理由.

(3)將直線CD繞點C逆時針方向旋轉45°所得直線與拋物線相交于另一點E,,連接QE.若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點的移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形、、、…按如圖所示的方式放置.、、、…和點、、…分別在直線軸上,則點的坐標是__________.(為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△OAB的位置如圖所示.將△OAB繞點O順時針旋轉90°得△OA1B1;再將△OA1B1繞點O順時針旋轉90°得△OA2B2;再將△OA2B2繞點O順時針旋轉90°得△OA3B3;…依此類推,第9次旋轉得到△OA9B9,則頂點A的對應點A9的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角邊分別為34的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內切圓,依次類推,圖10中有10個直角三角形的內切圓,它們的面積分別記為,,,…, ,則= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質.小華根據學習函數(shù)的經驗,對函數(shù)的圖象與性質進行了探究.下面是小華的探究過程,請補充完整:

1)在函數(shù)中,自變量x的取值范圍是________.

x

-4

-3

-2

-1

0

1

2

3

4

y

5

4

3

2

1

0

1

2

m

①求m的值;

②在平面直角坐標系xOy中,描出以上表中各組對應值為坐標的點,并根據描出的點,畫出該函數(shù)的圖象

2)結合函數(shù)圖象寫出該函數(shù)的一條性質:________.

查看答案和解析>>

同步練習冊答案