【題目】如圖,內(nèi)接于圓為直徑,點(diǎn)在圓上,過點(diǎn)作圓的切線與的延長(zhǎng)線交于點(diǎn),點(diǎn)是弧的中點(diǎn),連結(jié)于點(diǎn)

1)求證:

2)若,求的長(zhǎng).

【答案】1)見詳解;(2

【解析】

1)連接OD,根據(jù)圓周角定理的推論和等腰三角形的性質(zhì)可知,再根據(jù)切線的性質(zhì)和等量代換可知,再利用圓周角定理的推論可知,從而有 ,最后利用同位角相等,兩直線平行即可證明;

2)連接BD,先根據(jù)勾股定理得出AF的長(zhǎng)度,然后根據(jù)直角三角形兩銳角互余和對(duì)頂角相等得出,,然后利用銳角三角函數(shù)得出,進(jìn)而求出AD的長(zhǎng)度,最后再利用銳角三角函數(shù)即可求出AB的長(zhǎng)度.

1)連接OD

∵點(diǎn)是弧的中點(diǎn),

,

DE是圓的切線,

,

,

為直徑,

,

,

2)連接BD,

,

,

為直徑,

,

,

,

,

,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A,B為反比例函數(shù)yk0x0)上的兩個(gè)動(dòng)點(diǎn),以A,B為頂點(diǎn)構(gòu)造菱形ABCD

1)如圖1,點(diǎn)A,B橫坐標(biāo)分別為14,對(duì)角線BDx軸,菱形ABCD面積為,求k的值.

2)如圖2,當(dāng)點(diǎn)A,B運(yùn)動(dòng)至某一時(shí)刻,點(diǎn)C,點(diǎn)D恰好落在x軸和y軸正半軸上,此時(shí)∠ABC90°,求點(diǎn)A,B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=(xm2+2xm)(m為常數(shù))

1)求證:不論m為何值,該函數(shù)的圖象與x軸總有兩個(gè)不同的公共點(diǎn);

2)當(dāng)m取什么值時(shí),該函數(shù)的圖象關(guān)于y軸對(duì)稱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中, ,.點(diǎn)是斜邊AB上一個(gè)動(dòng)點(diǎn).過點(diǎn), 垂足為, 交邊(或邊) 于點(diǎn), 設(shè)的面積為,則之間的函數(shù)圖象大致為(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的對(duì)稱軸為直線,圖象過點(diǎn),部分圖象如圖所示,下列判斷:①;②;③;④若點(diǎn),均在拋物線上,則,其中正確的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,邊長(zhǎng)為1,∠A60,順次連接菱形ABCD各邊中點(diǎn),可得四邊形A1B1C1D1;順次連結(jié)四邊形A1B1C1D1各邊中點(diǎn),可得四邊形A2B2C2D2;順次連結(jié)四邊形A2B2C2D2各邊中點(diǎn),可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,,則四邊形A2019B2019C2019D2019的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1(注:與圖2完全相同),在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)三點(diǎn),,

1)求拋物線的解析式和對(duì)稱軸;

2是拋物線對(duì)稱軸上的一點(diǎn),求滿足的值為最小的點(diǎn)坐標(biāo)(請(qǐng)?jiān)趫D1中探索);

3)在第四象限的拋物線上是否存在點(diǎn),使四邊形是以為對(duì)角線且面積為的平行四邊形?若存在,請(qǐng)求出點(diǎn)坐標(biāo),若不存在請(qǐng)說明理由.(請(qǐng)?jiān)趫D2中探索)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線

1)當(dāng)時(shí),求拋物線的頂點(diǎn)坐標(biāo);

2)已知點(diǎn),拋物線軸交于點(diǎn)(不與重合),將點(diǎn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°至點(diǎn)

①直接寫出點(diǎn)的坐標(biāo)(用含的代數(shù)式表示);

②若拋物線與線段有且僅有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠有20名工人,每人每天加工甲種零件5個(gè)或乙種零件4個(gè).在這20名工人當(dāng)中,派x人加工甲種零件,其余的加工乙種零件,已知每加工一個(gè)甲種零件可獲利16元,每加工一個(gè)乙種零件可以獲利24元.

(1)寫出此工廠每天所獲利潤(rùn)y(元)與x(人)之間的函數(shù)關(guān)系式(只寫出解析式)

(2)若要使工廠每天獲利不低于1800元,問至少要派多少人加工乙種零件?

查看答案和解析>>

同步練習(xí)冊(cè)答案