【題目】如圖,四邊形ABCD是邊長為m的正方形,若AFm,EAB上一點且BE3,把△AEF沿著EF折疊,得到△A'EF,若△BA'E為直角三角形,則m的值為_____

【答案】12

【解析】

分兩種情況討論:①當時,分別用含m的式子表示出,然后利用勾股定理即可求出m的值;②當, 首先證明四邊形是正方形,然后利用正方形的性質即可求解.

根據(jù)EAB上一個動點,

AEF沿著EF折疊,得到

為直角三角形,

分兩種情況討論:

①當時,如圖1,

B、A'F三點共線,

根據(jù)翻折可知:

AF,ABm

BFm,

BE3,

AEm3

,

解得,m,或m0(舍),

m;

②當時,如圖2,

,

根據(jù)翻折可知:, AF

∴四邊形是正方形,

EAm,

BEABAEm3,

m12,

綜上,m12

故答案為:12

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BCAB于點B,連接OC交⊙O于點E,弦ADOC,弦DFAB于點G

1)求證:點E的中點;

2)求證:CD是⊙O的切線;

3)若sinBAD=,⊙O的半徑為5,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如表是一個4×4(44列共16數(shù)組成)的奇妙方陣,從這個方陣中選四個數(shù),而且這四個數(shù)中的任何兩個不在同一行,也不在同一列,有很多選法,把每次選出的四個數(shù)相加,其和是定值,則方陣中第三行三列的數(shù)是( 。

30

2sin60°

22

﹣3

﹣2

sin45°

0

|﹣5|

6

23

1

4

1

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大學畢業(yè)生小李自主創(chuàng)業(yè),開了一家小商品超市.已知超市中某商品的進價為每件20元,售價為每件30元,每個月可賣出180件;如果每件商品的售價每上漲1元,則每個月就會少賣出10件,但每件售價必須低于34元,設每件商品的售價上漲元(為非負整數(shù)),每個月的銷售利潤為.

1)求的函數(shù)關系式,并直接寫出自變量的取值范圍;

2)利用函數(shù)關系式求出每件商品的售價為多少元時,每個月可獲得最大利潤?最大利潤是多少?

3)利用函數(shù)關系式求出每件商品的售價定為多少元時,每個月的利潤恰好是1920元?這時每件商品的利潤率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E是對角線BD上的一點,過點CCFDB,且CF=DE,連接AE,BF,EF

1)求證:△ADE≌△BCF;

2)若∠ABE+BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yax+2x軸、y軸分別相交于AB兩點,與雙曲線yx0)相交于點P,PCx軸于點C,且PC4,點A的坐標為(﹣4,0).

1)求雙曲線的解析式;

2)若點Q為雙曲線上點P右側的一點,過點QQHx軸于點H,當以點Q,C,H為頂點的三角形與△AOB相似時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB2OBC邊的中點,點E是正方形內一動點,OE2,連接DE,將線段DE繞點D逆時針旋轉90°得DF,連接AE、CF.則線段OF長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,AB=BD,點BC、D、G四個點在同一個圓⊙O上,連接BG 并延長交AD于點F,連接DG并延長交AB于點E,BDCG交于點H,連接FH,下列結 論:①AE=DF②FH∥AB;③△DGH∽△BGE;CG⊙O的直徑時,DF=AF.其中正確結論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD與正方形CEFG,M是AF的中點,連接DM,EM.

(1)如圖1,點E在CD上,點G在BC的延長線上,請判斷DM,EM的數(shù)量關系與位置關系,并直接寫出結論;

(2)如圖2,點E在DC的延長線上,點G在BC上,(1)中結論是否仍然成立?請證明你的結論;

(3)將圖1中的正方形CEFG繞點C旋轉,使D,E,F(xiàn)三點在一條直線上,若AB=13,CE=5,請畫出圖形,并直接寫出MF的長.

查看答案和解析>>

同步練習冊答案