【題目】重慶市中小學(xué)教育大力提倡“2+2”素質(zhì)教育,在開展的幾年來,取得了重大成果.小明對本學(xué)期全班50名同學(xué)所選擇的活動項目進行了統(tǒng)計,根據(jù)收集的數(shù)據(jù)制作了下表:

1)請完善表格中的數(shù)據(jù):

2)根據(jù)上述表格中的人數(shù)百分比,繪制合適的統(tǒng)計圖.

【答案】(1)見解析;(2)見解析.

【解析】

(1)由題意可求出科技創(chuàng)作的人數(shù);用體育技能人數(shù)、藝術(shù)特長人數(shù)分別除以總?cè)藬?shù)求出所占的百分率,根據(jù)求出的數(shù)據(jù)填表即可.

(2)根據(jù)各選項人數(shù)所占的百分率,求出所對應(yīng)的圓心角的度數(shù),即可畫出扇形統(tǒng)計圖.

解:1)50﹣25﹣10=15,科技創(chuàng)作的人數(shù)為15人,

25÷50×100%=50%,

藝術(shù)特長的人數(shù)所占的百分比為10÷50×100%=20%,

藝術(shù)特長的人數(shù)所占的百分比為20%;

2)繪制扇形統(tǒng)計圖如右.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+3與x軸的兩個交點分別為(m,0)和(n,0),則當x=m+n時,y的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩地相距450千米,兩地之間有一個加油站O,且AO=270千米,一輛轎車從A地出發(fā),以每小時90千米的速度開往B地,一輛客車從B地出發(fā),以每小時60千米的速度開往A地,兩車同時出發(fā),設(shè)出發(fā)時間為t小時.

(1)經(jīng)過幾小時兩車相遇?

(2)當出發(fā)2小時時,轎車和客車分別距離加油站O多遠?

(3)經(jīng)過幾小時,兩車相距50千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,OM∠AOC的角平分線,ON∠BOC的角平分線.

(1)當∠AOB=90°,∠BOC=40°時,求∠MON的度數(shù).

(2)若∠AOB的度數(shù)不變,∠BOC的度數(shù)為α時,求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標系中,矩形ABCO,B點坐標為(4,3),拋物線y= x2+bx+c經(jīng)過矩形ABCO的頂點B、C,D為BC的中點,直線AD與y軸交于E點,與拋物線y= x2+bx+c交于第四象限的F點.

(1)求該拋物線解析式與F點坐標;
(2)如圖(2),動點P從點C出發(fā),沿線段CB以每秒1個單位長度的速度向終點B運動;同時,動點M從點A出發(fā),沿線段AE以每秒 個單位長度的速度向終點E運動.過點P作PH⊥OA,垂足為H,連接MP,MH.設(shè)點P的運動時間為t秒

①問EP+PH+HF是否有最小值?如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,請直接寫出此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當PAB為直角三角形時,AP的長為 __________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圖①中拋物線y=ax2+bx+c經(jīng)過點D(﹣1,0)、C(0,﹣1)、E(1,0).
(1)求圖①中拋物線的函數(shù)表達式;
(2)將圖①中拋物線向上平移一個單位,再繞原點O順時針旋轉(zhuǎn)180°后得到圖②中拋物線,則圖②中拋物線的函數(shù)表達式為;
(3)圖②中拋物線與直線y=﹣ x﹣ 相交于A、B兩點(點A在點B的左側(cè)),如圖③,求點A、B的坐標,并直接寫出當一次函數(shù)的值大于二次函數(shù)的值時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:如圖(1),在數(shù)軸上A示的數(shù)為a,B點表示的數(shù)為b,則點A到點B的距離記為AB.線段AB的長可以用右邊的數(shù)減去左邊的數(shù)表示,即AB=b-a.

解決問題:如圖(2),數(shù)軸上點A表示的數(shù)是-4,點B表示的數(shù)是2,點C表示的數(shù)是6

(1)若數(shù)軸上有一點D,且AD=3,求點D表示的數(shù);

(2)點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和3個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.求點A表示的數(shù)(用含t的代數(shù)式表示),BC等于多少(用含t的代數(shù)式表示).

(3)請問:3BCAB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

同步練習(xí)冊答案