20.因式分解:2(x-y)2-x+y.

分析 把后兩項(xiàng)看整體,添上括號(hào)和負(fù)號(hào),再提公因式x-y即可.

解答 解:原式=2(x-y)2-(x-y)=(x-y)(2x-2y-1).

點(diǎn)評(píng) 關(guān)鍵是正確找出公因式.關(guān)鍵是掌握具體方法:(1)當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),公因式的系數(shù)應(yīng)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)的相同的字母,而且各字母的指數(shù)取次數(shù)最低的;取相同的多項(xiàng)式,多項(xiàng)式的次數(shù)取最低的.(2)如果多項(xiàng)式的第一項(xiàng)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)成為正數(shù).注意提出“-”號(hào)時(shí),多項(xiàng)式的各項(xiàng)都要變號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知點(diǎn)A(b+1,b-2)在x軸上,則b=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,一次函數(shù)$y=-\frac{2}{3}x+2$的圖象分別與x軸、y軸交于A、B,已線段AB為邊在第一象限內(nèi)作等腰Rt△ABC,使∠BAC=90°.
(1)分別求點(diǎn)A、C的坐標(biāo);
(2)在x軸上求一點(diǎn)P,使它到B、C兩點(diǎn)的距離之和最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.為提高學(xué)校的機(jī)房條件,學(xué)校決定新購(gòu)進(jìn)一批電腦,經(jīng)了解某電腦公司有甲、乙兩種型號(hào)的電腦銷售.已知甲電腦的售價(jià)比乙電腦高1000元,如果購(gòu)買相同數(shù)量的甲、乙兩種型號(hào)的電腦,甲所需費(fèi)用為10萬(wàn)元,乙所需費(fèi)用為8萬(wàn)元.
(1)問(wèn)甲、乙兩種型號(hào)的電腦每臺(tái)售價(jià)各多少元?
(2)學(xué)校決定購(gòu)買甲、乙兩種型號(hào)的電腦共100臺(tái),且購(gòu)買乙型號(hào)電腦的臺(tái)數(shù)超過(guò)甲型號(hào)電腦的臺(tái)數(shù),但不多于甲型號(hào)電腦臺(tái)數(shù)的4倍,則當(dāng)購(gòu)買甲、乙兩種型號(hào)的電腦各多少臺(tái)時(shí),學(xué)校需要的總費(fèi)用最少?并求出最少的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如果把多項(xiàng)式x2-3x+n分解因式得(x-1)(x+m),那么m=-2,n=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.閱讀理解下面內(nèi)容,并解決問(wèn)題:
    據(jù)說(shuō),我國(guó)著名數(shù)學(xué)家華羅庚在一次出國(guó)訪問(wèn)途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題:一個(gè)數(shù)是59319,希望求出它的立方根,華羅庚脫口而出地報(bào)出答案,鄰座的乘客十分驚奇,忙問(wèn)計(jì)算的奧秘.
(1)由103=1000,1003=1000000,你能確定$\root{3}{59319}$是幾位數(shù)嗎?
∵1000<59319<1000000,
∴10<$\root{3}{59319}$<100.
∴$\root{3}{59319}$是兩位數(shù);
(2)由59319的個(gè)位上的數(shù)是9,你能確定$\root{3}{59319}$的個(gè)位上的數(shù)是幾嗎?
∵只有個(gè)位數(shù)是9的立方數(shù)是個(gè)位數(shù)依然是9,
∴$\root{3}{59319}$的個(gè)位數(shù)是9;
(3)如果劃去59319后面的三位319得到59,而33=27,43=64,由此你能確定$\root{3}{59319}$的十位上的數(shù)是幾嗎?
∵27<59<64,
∴30<$\root{3}{59319}$<40.
∴$\root{3}{59319}$的十位數(shù)是3.
所以,$\root{3}{59319}$的立方根是39.
已知整數(shù)50653是整數(shù)的立方,求$\root{3}{50653}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在△ABC中,D是BC邊的中點(diǎn),F(xiàn),E分別是AD及其延長(zhǎng)線上的點(diǎn),CF∥BE,連結(jié)BF,CE.
(1)求證:四邊形BECF是平行四邊形;
(2)對(duì)△ABC的邊或角添加一個(gè)條件,使得平行四邊形BECF成為菱形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.問(wèn)題情境:如圖1,AB∥CD,判斷∠ABP,∠CDP,∠BPD之間的數(shù)量關(guān)系.
小明的思路:如圖2,過(guò)點(diǎn)P作PE∥AB,通過(guò)平行線性質(zhì),可得∠ABP+∠CDP+∠BPD=360°.
問(wèn)題遷移:AB∥CD,直線EF分別與AB,CD交于點(diǎn)E,F(xiàn),點(diǎn)P在直線EF上(點(diǎn)P與點(diǎn)E,F(xiàn)不重合)運(yùn)動(dòng).
(1)當(dāng)點(diǎn)P在線段EF上運(yùn)動(dòng)時(shí),如圖3,判斷∠ABP,∠CDP,∠BPD之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)當(dāng)點(diǎn)P不在線段EF上運(yùn)動(dòng)時(shí),(1)中的結(jié)論是否成立,若成立,請(qǐng)你說(shuō)明理由;若不成立,請(qǐng)你在備用圖上畫出圖形,并直接寫出∠ABP,∠CDP,∠BPD之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.探索規(guī)律,下面的圖形是由邊長(zhǎng)為1的小正方形按照某種規(guī)律排列而成的.

(1)觀察圖形,填寫下表:
圖形個(gè)數(shù)( n )(1)(2)(3)
正方形的個(gè)數(shù)81318
圖形的周長(zhǎng)182838
(2)推測(cè)第n個(gè)圖形中,正方形有5n+3個(gè),周長(zhǎng)為10n+8.
(3)寫出第30個(gè)圖形的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案