【題目】如圖,拋物線(xiàn)L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,3),已知對(duì)稱(chēng)軸x=1.

(1)求拋物線(xiàn)L的解析式;
(2)將拋物線(xiàn)L向下平移h個(gè)單位長(zhǎng)度,使平移后所得拋物線(xiàn)的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線(xiàn)L上任一點(diǎn),點(diǎn)Q在直線(xiàn)l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:∵拋物線(xiàn)的對(duì)稱(chēng)軸x=1,B(3,0),

∴A(﹣1,0)

∵拋物線(xiàn)y=ax2+bx+c過(guò)點(diǎn)C(0,3)

∴當(dāng)x=0時(shí),c=3.

又∵拋物線(xiàn)y=ax2+bx+c過(guò)點(diǎn)A(﹣1,0),B(3,0)

,

∴拋物線(xiàn)的解析式為:y=﹣x2+2x+3


(2)

解:∵C(0,3),B(3,0),

∴直線(xiàn)BC解析式為y=﹣x+3,

∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴頂點(diǎn)坐標(biāo)為(1,4)

∵對(duì)于直線(xiàn)BC:y=﹣x+1,當(dāng)x=1時(shí),y=2;將拋物線(xiàn)L向下平移h個(gè)單位長(zhǎng)度,

∴當(dāng)h=2時(shí),拋物線(xiàn)頂點(diǎn)落在BC上;

當(dāng)h=4時(shí),拋物線(xiàn)頂點(diǎn)落在OB上,

∴將拋物線(xiàn)L向下平移h個(gè)單位長(zhǎng)度,使平移后所得拋物線(xiàn)的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),

則2≤h≤4


(3)

解:設(shè)P(m,﹣m2+2m+3),Q(﹣3,n),

①當(dāng)P點(diǎn)在x軸上方時(shí),過(guò)P點(diǎn)作PM垂直于y軸,交y軸與M點(diǎn),過(guò)B點(diǎn)作BN垂直于MP的延長(zhǎng)線(xiàn)于N點(diǎn),如圖所示:

∵B(3,0),

∵△PBQ是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形,

∴∠BPQ=90°,BP=PQ,

則∠PMQ=∠BNP=90°,∠MPQ=∠NBP,

在△PQM和△BPN中,

∴△PQM≌△BPN(AAS),

∴PM=BN,

∵PM=BN=﹣m2+2m+3,根據(jù)B點(diǎn)坐標(biāo)可得PN=3﹣m,且PM+PN=6,

∴﹣m2+2m+3+3﹣m=6,

解得:m=1或m=0,

∴P(1,4)或P(0,3).

②當(dāng)P點(diǎn)在x軸下方時(shí),過(guò)P點(diǎn)作PM垂直于l于M點(diǎn),過(guò)B點(diǎn)作BN垂直于MP的延長(zhǎng)線(xiàn)與N點(diǎn),

同理可得△PQM≌△BPN,

∴PM=BN,

∴PM=6﹣(3﹣m)=3+m,BN=m2﹣2m﹣3,

則3+m=m2﹣2m﹣3,

解得m=

∴P( , )或( ).

綜上可得,符合條件的點(diǎn)P的坐標(biāo)是(1,4),(0,3),( , )和( ).


【解析】(1)利用待定系數(shù)法求出拋物線(xiàn)的解析式即可;(2)先求出直線(xiàn)BC解析式為y=﹣x+3,再求出拋物線(xiàn)頂點(diǎn)坐標(biāo),得出當(dāng)x=1時(shí),y=2;結(jié)合拋物線(xiàn)頂點(diǎn)坐即可得出結(jié)果;(3)設(shè)P(m,﹣m2+2m+3),Q(﹣3,n),由勾股定理得出PB2=(m﹣3)2+(﹣m2+2m+3)2 , PQ2=(m+3)2+(﹣m2+2m+3﹣n)2 , BQ2=n2+36,過(guò)P點(diǎn)作PM垂直于y軸,交y軸與M點(diǎn),過(guò)B點(diǎn)作BN垂直于MP的延長(zhǎng)線(xiàn)于N點(diǎn),由AAS證明△PQM≌△BPN,得出MQ=NP,PM=BN,則MQ=﹣m2+2m+3﹣n,PN=3﹣m,得出方程﹣m2+2m+3﹣n=3﹣m,解方程即可.本題是二次函數(shù)綜合題目,考查了用待定系數(shù)法求出拋物線(xiàn)的解析式、拋物線(xiàn)的頂點(diǎn)式、等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、坐標(biāo)與圖形性質(zhì)等知識(shí);本題綜合性強(qiáng),有一定難度,特別是(3)中,需要通過(guò)作輔助線(xiàn)證明三角形全等才能得出結(jié)果.
【考點(diǎn)精析】本題主要考查了等腰直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)y= (k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、C分別為坐標(biāo)軸上上的三個(gè)點(diǎn),且OA=1,OB=3,OC=4,
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)M為該拋物線(xiàn)上一動(dòng)點(diǎn),在(2)的條件下,請(qǐng)求出當(dāng)|PM﹣AM|的最大值時(shí)點(diǎn)M的坐標(biāo),并直接寫(xiě)出|PM﹣AM|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是邊AC上一點(diǎn)(不包括端點(diǎn)A、C),過(guò)點(diǎn)P作PE⊥BC于點(diǎn)E,過(guò)點(diǎn)E作EF∥AC,交AB于點(diǎn)F.設(shè)PC=x,
PE=y.

(1)求y與x的函數(shù)關(guān)系式;
(2)是否存在點(diǎn)P使△PEF是Rt△?若存在,求此時(shí)的x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOOM,OA=8,點(diǎn)B為射線(xiàn)OM上的一個(gè)動(dòng)點(diǎn),分別以OB、AB為直角邊,B為直角頂點(diǎn),在OM兩側(cè)作等腰RtOBF、等腰RtABE,連接EFOMP點(diǎn),當(dāng)點(diǎn)B在射線(xiàn)OM上移動(dòng)時(shí),PB的長(zhǎng)度是 ( )

A. 3.6 B. 4 C. 4.8 D. PB的長(zhǎng)度隨B點(diǎn)的運(yùn)動(dòng)而變化

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,AC的垂直平分線(xiàn)分別交BC、AC于點(diǎn)D、E.

(1)若AC=12,BC=15,求ABD的周長(zhǎng);

(2)若∠B=20°,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(-3,2),B(-4,-3),C(-1,-1).

(1)在圖中作出ABC關(guān)于y軸對(duì)稱(chēng)的A1B1C1;

(2)寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo)(直接寫(xiě)答案):A1_________;B1________;C1________;

(3)求A1B1C1的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形ABCD對(duì)角線(xiàn)AC所在直線(xiàn)上有一點(diǎn)O,OA=AC=2,將正方形繞O點(diǎn)順時(shí)針旋轉(zhuǎn)60°,在旋轉(zhuǎn)過(guò)程中,正方形掃過(guò)的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點(diǎn)M,若H是AC的中點(diǎn),連接MH.

(1)求證:MH為⊙O的切線(xiàn).
(2)若MH= ,tan∠ABC= ,求⊙O的半徑.
(3)在(2)的條件下分別過(guò)點(diǎn)A、B作⊙O的切線(xiàn),兩切線(xiàn)交于點(diǎn)D,AD與⊙O相切于N點(diǎn),過(guò)N點(diǎn)作NQ⊥BC,垂足為E,且交⊙O于Q點(diǎn),求線(xiàn)段NQ的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案