【題目】如圖,AOOM,OA=8,點B為射線OM上的一個動點,分別以OB、AB為直角邊,B為直角頂點,在OM兩側作等腰Rt△OBF、等腰Rt△ABE,連接EF交OM于P點,當點B在射線OM上移動時,PB的長度是 ( )
A. 3.6 B. 4 C. 4.8 D. PB的長度隨B點的運動而變化
科目:初中數學 來源: 題型:
【題目】如圖,點A,B在反比例函數y= (k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負半軸上,CD=k,已知AB=2AC,E是AB的中點,且△BCE的面積是△ADE的面積的2倍,則k的值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點,且B(1,0)
(1)求拋物線的解析式和點A的坐標;
(2)如圖1,點P是直線y=x上的動點,當直線y=x平分∠APB時,求點P的坐標;
(3)如圖2,已知直線y= x﹣ 分別與x軸、y軸交于C、F兩點,點Q是直線CF下方的拋物線上的一個動點,過點Q作y軸的平行線,交直線CF于點D,點E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,﹣3),動點P在拋物線上.
(1)b= , c= , 點B的坐標為;(直接填寫結果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD是∠ABC平分線,DEAB于E,AB=36cm,BC=24cm,S△ABC =144cm2,則DE的長是( )
A. 4.8cm B. 4.5cm C. 4 cm D. 2.4cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(A在B的左側),與y軸交于點C(0,3),已知對稱軸x=1.
(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(包括△OBC的邊界),求h的取值范圍;
(3)設點P是拋物線L上任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)觀察推理:如圖①,在△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A、B在直線l的同側,,垂足分別為.求證:△AEC≌△CDB.
(2)類比探究:如圖②,在Rt△ABC中,∠ACB=90°,AC=4,將斜邊AB繞點A逆時針旋轉90°至AB,,連接CB,,求△ACB,的面積.
(3)拓展提升:如圖③,在△EBC中,∠E=∠ECB=60°,EC=BC=3,點O在BC上,且OC=2,動點P從點E沿射線EC以每秒1個單位長度的速度運動,連接OP,將線段OP繞點O逆時針旋轉120°得到線段OF.要使點 F恰好落在射線EB上,求點P運動的時間t.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,向一個半徑為R、容積為V的球形容器內注水,則能夠反映容器內水的體積y與容器內水深x間的函數關系的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,G是BD上一點,連接CG并延長交BA的延長線于點F,交AD于點E.
(1)求證:AG=CG.
(2)求證:AG2=GEGF.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com