【題目】如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線,過點(diǎn)C作CE⊥BD于點(diǎn)E,過點(diǎn)A作BD的平行線,交CE的延長線于點(diǎn)F,在AF的延長線上截取FG=BD,連接BG、DF.若AG=13,BG=5,則CF的長為 .
【答案】5
【解析】解:∵AG∥BD,BD=FG,
∴四邊形BGFD是平行四邊形,
∵CF⊥BD,
∴CF⊥AG,
又∵點(diǎn)D是AC中點(diǎn),
∴BD=DF= AC,
∴四邊形BGFD是菱形,
設(shè)GF=x,則AF=13﹣x,AC=2x,
∵在Rt△ACF中,∠CFA=90°,
∴AF2+CF2=AC2 , 即(13﹣x)2+62=(2x)2 ,
解得:x=5,
即GF=5.
故答案是:5.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直角三角形斜邊上的中線的相關(guān)知識(shí),掌握直角三角形斜邊上的中線等于斜邊的一半,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校去年對實(shí)驗(yàn)器材的投資為2萬元,預(yù)計(jì)今明兩年的投資總額為8萬元,若設(shè)該校這兩年在實(shí)驗(yàn)器材投資上的平均增長率為x,則可列方程:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算或化簡
(1)﹣22+(﹣ )﹣2﹣(π﹣5)0﹣|﹣3|
(2)(﹣3a)3+(﹣2a4)2÷(﹣a)5
(3)(a+3b﹣2c)(a﹣3b﹣2c)
(4)y(x+y)+(x﹣y)2﹣(x+y)(﹣y+x),其中x=﹣ 、y=3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)黑色不透明的袋子里裝有除顏色外其余都相同的7個(gè)紅球和3個(gè)白球,那么從這個(gè)袋子中摸出一個(gè)紅球的可能性和摸出一個(gè)白球的可能性相比( )
A. 摸出一個(gè)紅球的可能性大 B. 摸出一個(gè)白球的可能性大
C. 兩種可能性一樣大 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為5㎝,P到圓心O的距離為6㎝,則點(diǎn)P在⊙O( )
A. 外部B. 內(nèi)部C. 圓上D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC為等邊三角形,在平面內(nèi)找一點(diǎn)P,使△PAB,△PBC,△PAC均為等腰三角形,則這樣的點(diǎn)P的個(gè)數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com