精英家教網 > 初中數學 > 題目詳情

如圖①,已知二次函數的解析式是y=ax2+bx(a>0),頂點為A(1,-1).
(1)a=   ;
(2)若點P在對稱軸右側的二次函數圖像上運動,連結OP,交對稱軸于點B,點B關于頂點A的對稱點為C,連接PC、OC,求證:∠PCB=∠OCB;
(3)如圖②,將拋物線沿直線y=-x作n次平移(n為正整數,n≤12),頂點分別為A1,A2,…,An,橫坐標依次為1,2,…,n,各拋物線的對稱軸與x軸的交點分別為D1,D2,…,Dn,以線段AnDn為邊向右作正方形AnDnEnFn,是否存在點Fn恰好落在其中的一個拋物線上,若存在,求出所有滿足條件的正方形邊長;若不存在,請說明理由.

(1)1;(2)證明見解析;(3)2,6.

解析試題分析:(1)直接利用頂點坐標,進而代入求出即可;
(2)根據題意得出,進而得出△ODC∽△PHC,求出即可;
(3)由題意得出:A1(1,-1),A2(2,-2),A3(3,-3),…An(n,-n),進而得出F1(2,-1),F2(4,-2),F3(6,-3),…Fn(2n,-n)..,即可分類討論得出n的值.
試題解析:(1)解:∵二次函數的解析式是y=ax2+bx(a>0),頂點為A(1,-1),
,
解得:

(2)證明:由(1)得,拋物線的解析式為:y=x2-2x,
設P(m,m2-2m),則直線OP的解析式為:y=(m-2)x,
∴B(1,m-2),∴C(1,-m),
過點P作PH⊥CD于點H,則PH=m-1,CH=m2-m,
,
∵∠ODC=∠PHC,
∴△ODC∽△PHC,
∴∠PCB=∠OCB;
(3)解:由題意得出:A1(1,-1),A2(2,-2),A3(3,-3),…An(n,-n),
∴F1(2,-1),F2(4,-2),F3(6,-3),…Fn(2n,-n)…
若Fn恰好落在其中的第m個拋物線上(m為正整數,m≤12),
則該拋物線解析式為:y=(x-m)2-m,
將Fn代入得:-n=(2n-m)2-m,
即(2n-m)2=m-n,
∴m-n是一個平方數,只能是0,1,4,9,
當m-n=0時,2n-m=0,∴m=n=0(舍去);
當m-n=1時,2n-m=1或-1,∴n=2或0(舍去);
當m-n=4時,2n-m=2或-2,∴n=2或6;
當m-n=9時,2n-m=3或-3,∴n=6(舍去)或12(舍去).
綜上所述,正方形邊長n的值可以是2,6.
考點:二次函數綜合題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

為深化“攜手節(jié)能低碳,共建碧水藍天”活動,發(fā)展“低碳經濟”,某單位進行技術革新,讓可再生資源重新利用.今年1月份,再生資源處理量為40噸,從今年1月1日起,該單位每月再生資源處理量每一個月將提高10噸.月處理成本(元)與月份之間的關系可近似地表示為:,每處理一噸再生資源得到的新產品的售價定為100元.若該單位每月再生資源處理量為y(噸),每月的利潤為w(元).
(1)分別求出y與x,w與x的函數關系式;
(2)在今年內該單位哪個月獲得利潤達到5800元?
(3)隨著人們環(huán)保意識的增加,該單位需求的可再生資源數量受限.今年三月的再生資源處理量比二月份減少了m%,該新產品的產量也隨之減少,其售價比二月份的售價增加了%.四月份,該單位得到國家科委的技術支持,使月處理成本比二月份的降低了%.如果該單位四月份在保持三月份的再生資源處理量和新產品售價的基礎上,其利潤比二月份的利潤減少了60元,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.下列結論:①;②時,;③平行于x軸的直線與兩條拋物線有四個交點;④2AB=3AC.其中錯誤結論的個數是(   )

A.1      B.2      C.3           D.4

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某賓館有30個房間供游客住宿,當每個房間的房價為每天120元時,房間會全部住滿.當每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據規(guī)定,每個房間每天的房價不得高于210元.設每個房間的房價增加x元(x為10的正整數倍).
(1)設一天訂住的房間數為y,直接寫出y與x的函數關系式及自變量x的取值范圍;
(2)設賓館一天的利潤為w元,求w與x的函數關系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

實驗數據顯示,一般成人喝半斤低度白酒后,1.5時內其血液中酒精含量y(毫克/百毫升)與時間(時)的關系可近似地用二次函數刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(k>0)刻畫(如圖所示).
(1)根據上述數學模型計算:
①喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?
②當=5時,y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛人員血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數學模型,假設某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知直線AB:與拋物線交于A、B兩點,
(1)直線AB總經過一個定點C,請直接寫出點C坐標;
(2)當時,在直線AB下方的拋物線上求點P,使△ABP的面積等于5;
(3)若在拋物線上存在定點D使∠ADB=90°,求點D到直線AB的最大距離.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

(11分)如圖,已知拋物線y=x2+bx+c經過A(-1,0)、B(4,5)兩點,過點B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點M是拋物線上的一個點,直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點的四邊形是平行四邊形,求出點M的橫坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+n與x軸、y軸分別交于B、C兩點,拋物線y=ax2+bx+3(a≠0)過C、B兩點,交x軸于另一點A,連接AC,且tan∠CAO=3.
(1)求拋物線的解析式;
(2)若點P是射線CB上一點,過點P作x軸的垂線,垂足為H,交拋物線于Q,設P點橫坐標為t,線段PQ的長為d,求出d與t之間的函數關系式,并寫出相應的自變量t的取值范圍;
(3)在(2)的條件下,當點P在線段BC上時,設PH=e,已知d,e是以y為未知數的一元二次方程:y2-(m+3)y+(5m2-2m+13)="0" (m為常數)的兩個實數根,點M在拋物線上,連接MQ、MH、PM,且.MP平分∠QMH,求出t值及點M的坐標.

查看答案和解析>>

同步練習冊答案