【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB邊上的中點,點D、E分別在邊AC、BC邊上,且AD=CE,連接DE、DF、EF.
(1)求證:△ADF≌△CEF;
(2)試判斷△DFE的形狀,并說明理由.
【答案】
(1)證明:∵F是AB中點,AC=BC,∠ACB=90°,
∴AF=BF=CF,∠A=∠FCE=45°,
在△ADF和△CEF中,
,
∴△ADF≌△CEF(SAS)
(2)解:△DEF是等腰直角三角形.理由如下:
∵△ADF≌△CEF,
∴DF=EF,∠AFD=∠CFE,
∵∠AFD+∠CFD=90°,
∴∠CFE+∠CFE=90°,即∠DFE=90°,
∴△DEF是等腰直角三角形
【解析】(1)根據F是AB中點,可得AF=BF=CF,∠A=∠FCE=45°,即可證明△ADF≌△CEF;(2)根據△ADF≌△CEF可得DF=EF,∠AFD=∠CFE,即可求得∠DFE=90°,即可解題.
【考點精析】關于本題考查的等腰直角三角形,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】如圖,P為平行四邊形ABCD的邊AD上的一點,E,F分別為PB,PC的中點,△PEF,△PDC,△PAB的面積分別為S,,.若S=3,則的值為( )
A.24 B.12 C.6 D.3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC的度數為( )
A.72°
B.100°
C.108°
D.120°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB為邊向外作等邊△ACD、等邊△ABE,EF⊥AB,垂足為F,連接DF,當= 時,四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E在DF上,點B在AC上,∠1=∠2,∠C=∠D.
試說明:AC∥DF.將過程補充完整.
解:∵∠1=∠2()
∠1=∠3()
∴∠2=∠3()
∴∥()
∴∠C=∠ABD ()
又∵∠C=∠D()
∴∠D=∠ABD()
∴AC∥DF()
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com