【題目】如圖,在△ABC中,AB=AC,BC=12,E為AC邊的中點,線段BE的垂直平分線交邊BC于點D.設BD=x,tan∠ACB=y,則( )

A.x﹣y2=3
B.2x﹣y2=9
C.3x﹣y2=15
D.4x﹣y2=21

【答案】B
【解析】解:

過A作AQ⊥BC于Q,過E作EM⊥BC于M,連接DE,
∵BE的垂直平分線交BC于D,BD=x,
∴BD=DE=x,
∵AB=AC,BC=12,tan∠ACB=y,
= =y,BQ=CQ=6,
∴AQ=6y,
∵AQ⊥BC,EM⊥BC,
∴AQ∥EM,
∵E為AC中點,
∴CM=QM= CQ=3,
∴EM=3y,
∴DM=12﹣3﹣x=9﹣x,
在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2 ,
即2x﹣y2=9,
故選B.
【考點精析】解答此題的關鍵在于理解線段垂直平分線的性質(zhì)的相關知識,掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等,以及對等腰三角形的性質(zhì)的理解,了解等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東60°方向,距離燈塔86n mile的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,此時,B處與燈塔P的距離約為 n mile.(結(jié)果取整數(shù),參考數(shù)據(jù): ≈1.7, ≈1.4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(﹣ ﹣2+(π﹣ 0﹣| |+tan60°+(﹣1)2017

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的不等式組 的解集中至少有5個整數(shù)解,則正數(shù)a的最小值是( )
A.3
B.2
C.1
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級10個班級師生舉行畢業(yè)文藝匯演,每班2個節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級統(tǒng)計后發(fā)現(xiàn)唱歌類節(jié)目數(shù)比舞蹈類節(jié)目數(shù)的2倍少4個.
(1)九年級師生表演的歌唱與舞蹈類節(jié)目數(shù)各有多少個?
(2)該校七、八年級師生有小品節(jié)目參與,在歌唱、舞蹈、小品三類節(jié)目中,每個節(jié)目的演出平均用時分別是5分鐘、6分鐘、8分鐘,預計所有演出節(jié)目交接用時共花15分鐘,若從20:00開始,22:30之前演出結(jié)束,問參與的小品類節(jié)目最多能有多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在面積都相等的所有矩形中,當其中一個矩形的一邊長為1時,它的另一邊長為3.
(1)設矩形的相鄰兩邊長分別為x,y.
①求y關于x的函數(shù)表達式;
②當y≥3時,求x的取值范圍;
(2)圓圓說其中有一個矩形的周長為6,方方說有一個矩形的周長為10,你認為圓圓和方方的說法對嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取點O,以O為圓心,OF長為半徑作⊙O與AD相切于點P.若AB=6,BC=3 ,則下列結(jié)論:①F是CD的中點;②⊙O的半徑是2;③AE= CE;④S陰影= .其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系xOy中(如圖),已知拋物線y=﹣x2+bx+c經(jīng)過點A(2,2),對稱軸是直線x=1,頂點為B.

(1)求這條拋物線的表達式和點B的坐標;
(2)點M在對稱軸上,且位于頂點上方,設它的縱坐標為m,聯(lián)結(jié)AM,用含m的代數(shù)式表示∠AMB的余切值;
(3)將該拋物線向上或向下平移,使得新拋物線的頂點C在x軸上.原拋物線上一點P平移后的對應點為點Q,如果OP=OQ,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,M是AC邊上的一點,連接BM.將△ABC沿AC翻折,使點B落在點D處,當DM∥AB時,求證:四邊形ABMD是菱形.

查看答案和解析>>

同步練習冊答案