【題目】如圖,CD為線段AB上的兩點,MN分別是線段AC,BD的中點.

(1)如果CD=5cm,MN=8cm,求AB的長;

(2)如果AB=aMN=b,求CD的長.

【答案】(1)線段AB的長為11cm;(2)2b﹣a.

【解析】

(1)先根據(jù)M,N分別是線段AC,BD的中點,可得MC=AC,DN=BD,

再根據(jù)MC+CD+DN=MN=8cm,可得MC+DN=8﹣5=3cm,進而可得:AC+BD=2MC+2DN=2×3=6cm,所以AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),

(2)根據(jù)M,N分別是線段AC,BD的中點,可得CM=AM=AC,BN=DN=BD,

再根據(jù)AM+BN=MC+DN=AB﹣MN,可得MC+DN=a﹣b,

進而可得:CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.

(1)M,N分別是線段AC,BD的中點,

MC=AC,DN=BD,

MC+CD+DN=MN=8cm,

MC+DN=8﹣5=3cm,

AC+BD=2MC+2DN=2×3=6cm,

AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),

即線段AB的長為11cm,

(2)M,N分別是線段AC,BD的中點,

CM=AM=AC,BN=DN=BD,

AM+BN=MC+DN=AB﹣MN,

MC+DN=a﹣b,

CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知P為⊙O外一點,PA為⊙O的切線,B為⊙O上一點,且PA=PB,C為優(yōu)弧 上任意一點(不與A、B重合),連接OP、AB,AB與OP相交于點D,連接AC、BC.

(1)求證:PB為⊙O的切線;
(2)若tan∠BCA= ,⊙O的半徑為 ,求弦AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,

以下各層均比上一層多一個圓圈,一共堆了n 層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以

算出圖1中所有圓圈的個數(shù)為123n

如果圖中的圓圈共有13層,請解決下列問題:

1)我們自上往下,在每個圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)1,2,34,……,則最底層最左

邊這個圓圈中的數(shù)是

2)我們自上往下,在每個圓圈中按圖4的方式填上一串連續(xù)的整數(shù)-23,-22,-21,-20……,求

最底層最右邊圓圈內(nèi)的數(shù)是_______

3)求圖4中所有圓圈中各數(shù)的絕對值之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AD=8,BC=15,點E在BC邊上,且CE=2BE。點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒3個單位長度的速度從點C出發(fā),沿CB向點B運動,當其中一個點停止運動時,另一個點也隨之停止運動。當運動時間t=______秒時,以點P,Q,E,D為頂點的四邊形是平行四邊形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=15,BC=14,AC=13,求ABC的面積.

某學習小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.

思路:(1) ADBCD,設(shè)BD = x,用含x的代數(shù)式表示CD;(2)根據(jù)勾股定理,利用AD作為橋梁,建立方程模型,求出x;(3)利用勾股定理求出AD的長,再計算三角形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直徑為650mm的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示,若油面寬AB=600mm,則油的最大深度為mm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市甲、乙兩個汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:

請你根據(jù)上圖填寫下表:

銷售公司

平均數(shù)

方差

中位數(shù)

眾數(shù)

9

9

8

請你從以下兩個不同的方面對甲、乙兩個汽車銷售公司去年一至十月份的銷售情況進行分析:

從平均數(shù)和方差結(jié)合看;

從折線圖上甲、乙兩個汽車銷售公司銷售數(shù)量的趨勢看分析哪個汽車銷售公司較有潛力

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電腦公司銷售部為了定制下個月的銷售計劃,對20位銷售員本月的銷售量進行了統(tǒng)計,繪制成如圖所示的統(tǒng)計圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是( )

A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列關(guān)于函數(shù) 的四個命題:①當 時, 有最小值10;② 為任意實數(shù), 時的函數(shù)值大于 時的函數(shù)值;③若 ,且 是整數(shù),當 時, 的整數(shù)值有 個;④若函數(shù)圖象過點 ,其中 ,則 .其中真命題的序號是( )
A.①
B.②
C.③
D.④

查看答案和解析>>

同步練習冊答案